
Int J Comput Vis
DOI 10.1007/s11263-007-0107-3

Modeling the World from Internet Photo Collections

Noah Snavely · Steven M. Seitz · Richard Szeliski

Received: 30 January 2007 / Accepted: 31 October 2007
© Springer Science+Business Media, LLC 2007

Abstract There are billions of photographs on the Inter-
net, comprising the largest and most diverse photo collec-
tion ever assembled. How can computer vision researchers
exploit this imagery? This paper explores this question from
the standpoint of 3D scene modeling and visualization. We
present structure-from-motion and image-based rendering
algorithms that operate on hundreds of images downloaded
as a result of keyword-based image search queries like
“Notre Dame” or “Trevi Fountain.” This approach, which
we call Photo Tourism, has enabled reconstructions of nu-
merous well-known world sites. This paper presents these
algorithms and results as a first step towards 3D modeling of
the world’s well-photographed sites, cities, and landscapes
from Internet imagery, and discusses key open problems and
challenges for the research community.

Keywords Structure from motion · 3D scene analysis ·
Internet imagery · Photo browsers · 3D navigation

1 Introduction

Most of the world’s significant sites have been photographed
under many different conditions, both from the ground and
from the air. For example, a Google image search for “Notre
Dame” returns over one million hits (as of September,
2007), showing the cathedral from almost every conceivable
viewing position and angle, different times of day and night,

N. Snavely (�) · S.M. Seitz
University of Washington, Seattle, WA, USA
e-mail: snavely@cs.washington.edu

R. Szeliski
Microsoft Research, Redmond, WA, USA

and changes in season, weather, and decade. Furthermore,
entire cities are now being captured at street level and from
a birds-eye perspective (e.g., Windows Live Local,1,2 and
Google Streetview3), and from satellite or aerial views (e.g.,
Google4).

The availability of such rich imagery of large parts of
the earth’s surface under many different viewing conditions
presents enormous opportunities, both in computer vision
research and for practical applications. From the standpoint
of shape modeling research, Internet imagery presents the
ultimate data set, which should enable modeling a signifi-
cant portion of the world’s surface geometry at high resolu-
tion. As the largest, most diverse set of images ever assem-
bled, Internet imagery provides deep insights into the space
of natural images and a rich source of statistics and priors for
modeling scene appearance. Furthermore, Internet imagery
provides an ideal test bed for developing robust and gen-
eral computer vision algorithms that can work effectively
“in the wild.” In turn, algorithms that operate effectively on
such imagery will enable a host of important applications,
ranging from 3D visualization, localization, communication
(media sharing), and recognition, that go well beyond tradi-
tional computer vision problems and can have broad impacts
for the population at large.

To date, this imagery is almost completely untapped and
unexploited by computer vision researchers. A major rea-
son is that the imagery is not in a form that is amenable to
processing, at least by traditional methods: the images are

1Windows Live Local, http://local.live.com.
2Windows Live Local—Virtual Earth Technology Preview, http://
preview.local.live.com.
3Google Maps, http://maps.google.com.
4Google Maps, http://maps.google.com.

Int J Comput Vis

unorganized, uncalibrated, with widely variable and uncon-
trolled illumination, resolution, and image quality. Develop-
ing computer vision techniques that can operate effectively
with such imagery has been a major challenge for the re-
search community. Within this scope, one key challenge is
registration, i.e., figuring out correspondences between im-
ages, and how they relate to one another in a common 3D
coordinate system (structure from motion). While a lot of
progress has been made in these areas in the last two decades
(Sect. 2), many challenging open problems remain.

In this paper we focus on the problem of geometrically
registering Internet imagery and a number of applications
that this enables. As such, we first review the state of the
art and then present some first steps towards solving this
problem along with a visualization front-end that we call
Photo Tourism (Snavely et al. 2006). We then present a set
of open research problems for the field, including the cre-
ation of more efficient correspondence and reconstruction
techniques for extremely large image data sets. This paper
expands on the work originally presented in (Snavely et al.
2006) with many new reconstructions and visualizations of
algorithm behavior across datasets, as well as a brief dis-
cussion of Photosynth, a Technology Preview by Microsoft
Live Labs, based largely on (Snavely et al. 2006). We also
present a more complete related work section and add a
broad discussion of open research challenges for the field.
Videos of our system, along with additional supplementary
material, can be found on our Photo Tourism project Web
site, http://phototour.cs.washington.edu.

2 Previous Work

The last two decades have seen a dramatic increase in the
capabilities of 3D computer vision algorithms. These in-
clude advances in feature correspondence, structure from
motion, and image-based modeling. Concurrently, image-
based rendering techniques have been developed in the com-
puter graphics community, and image browsing techniques
have been developed for multimedia applications.

2.1 Feature Correspondence

Twenty years ago, the foundations of modern feature detec-
tion and matching techniques were being laid. Lucas and
Kanade (1981) had developed a patch tracker based on two-
dimensional image statistics, while Moravec (1983) intro-
duced the concept of “corner-like” feature points. Först-
ner (1986) and then Harris and Stephens (1988) both pro-
posed finding keypoints using measures based on eigenval-
ues of smoothed outer products of gradients, which are still
widely used today. While these early techniques detected

keypoints at a single scale, modern techniques use a quasi-
continuous sampling of scale space to detect points invari-
ant to changes in scale and orientation (Lowe 2004; Mikola-
jczyk and Schmid 2004) and somewhat invariant to affine
transformations (Baumberg 2000; Kadir and Brady 2001;
Schaffalitzky and Zisserman 2002; Mikolajczyk et al. 2005).

Unfortunately, early techniques relied on matching
patches around the detected keypoints, which limited their
range of applicability to scenes seen from similar view-
points, e.g., for aerial photogrammetry applications (Hannah
1988). If features are being tracked from frame to frame, an
affine extension of the basic Lucas-Kanade tracker has been
shown to perform well (Shi and Tomasi 1994). However, for
true wide baseline matching, i.e., the automatic matching of
images taken from widely different views (Baumberg 2000;
Schaffalitzky and Zisserman 2002; Strecha et al. 2003;
Tuytelaars and Van Gool 2004; Matas et al. 2004), (weakly)
affine-invariant feature descriptors must be used.

Mikolajczyk et al. (2005) review some recently devel-
oped view-invariant local image descriptors and experimen-
tally compare their performance. In our own Photo Tourism
research, we have been using Lowe’s Scale Invariant Fea-
ture Transform (SIFT) (Lowe 2004), which is widely used
by others and is known to perform well over a reasonable
range of viewpoint variation.

2.2 Structure from Motion

The late 1980s also saw the development of effective struc-
ture from motion techniques, which aim to simultaneously
reconstruct the unknown 3D scene structure and camera
positions and orientations from a set of feature correspon-
dences. While Longuet-Higgins (1981) introduced a still
widely used two-frame relative orientation technique in
1981, the development of multi-frame structure from mo-
tion techniques, including factorization methods (Tomasi
and Kanade 1992) and global optimization techniques (Spet-
sakis and Aloimonos 1991; Szeliski and Kang 1994; Olien-
sis 1999) occurred quite a bit later.

More recently, related techniques from photogrammetry
such as bundle adjustment (Triggs et al. 1999) (with related
sparse matrix techniques, Szeliski and Kang 1994) have
made their way into computer vision and are now regarded
as the gold standard for performing optimal 3D reconstruc-
tion from correspondences (Hartley and Zisserman 2004).

For situations where the camera calibration parameters
are unknown, self-calibration techniques, which first esti-
mate a projective reconstruction of the 3D world and then
perform a metric upgrade have proven to be successful
(Pollefeys et al. 1999; Pollefeys and Van Gool 2002). In
our own work (Sect. 4.2), we have found that the simpler
approach of simply estimating each camera’s focal length
as part of the bundle adjustment process seems to produce
good results.

Int J Comput Vis

The SfM approach used in this paper is similar to that
of Brown and Lowe (2005), with several modifications to
improve robustness over a variety of data sets. These in-
clude initializing new cameras using pose estimation, to
help avoid local minima; a different heuristic for selecting
the initial two images for SfM; checking that reconstructed
points are well-conditioned before adding them to the scene;
and using focal length information from image EXIF tags.
Schaffalitzky and Zisserman (2002) present another related
technique for reconstructing unordered image sets, concen-
trating on efficiently matching interest points between im-
ages. Vergauwen and Van Gool have developed a similar
approach (Vergauwen and Van Gool 2006) and are hosting a
web-based reconstruction service for use in cultural heritage
applications5. Fitzgibbon and Zisserman (1998) and Nistér
(2000) prefer a bottom-up approach, where small subsets of
images are matched to each other and then merged in an
agglomerative fashion into a complete 3D reconstruction.
While all of these approaches address the same SfM prob-
lem that we do, they were tested on much simpler datasets
with more limited variation in imaging conditions. Our pa-
per marks the first successful demonstration of SfM tech-
niques applied to the kinds of real-world image sets found
on Google and Flickr. For instance, our typical image set
has photos from hundreds of different cameras, zoom levels,
resolutions, different times of day or seasons, illumination,
weather, and differing amounts of occlusion.

2.3 Image-Based Modeling

In recent years, computer vision techniques such as structure
from motion and model-based reconstruction have gained
traction in the computer graphics field under the name of
image-based modeling. IBM is the process of creating three-
dimensional models from a collection of input images (De-
bevec et al. 1996; Grzeszczuk 2002; Pollefeys et al. 2004).

One particular application of IBM has been the cre-
ation of large scale architectural models. Notable exam-
ples include the semi-automatic Façade system (Debevec
et al. 1996), which was used to reconstruct compelling fly-
throughs of the University of California Berkeley campus;
automatic architecture reconstruction systems such as that
of Dick et al. (2004); and the MIT City Scanning Project
(Teller et al. 2003), which captured thousands of calibrated
images from an instrumented rig to construct a 3D model of
the MIT campus. There are also several ongoing academic
and commercial projects focused on large-scale urban scene
reconstruction. These efforts include the 4D Cities project
(Schindler et al. 2007), which aims to create a spatial-
temporal model of Atlanta from historical photographs; the

5Epoch 3D Webservice, http://homes.esat.kuleuven.be/~visit3d/
webservice/html/.

Stanford CityBlock Project (Román et al. 2004), which uses
video of city blocks to create multi-perspective strip images;
and the UrbanScape project of Akbarzadeh et al. (2006).
Our work differs from these previous approaches in that
we only reconstruct a sparse 3D model of the world, since
our emphasis is more on creating smooth 3D transitions be-
tween photographs rather than interactively visualizing a 3D
world.

2.4 Image-Based Rendering

The field of image-based rendering (IBR) is devoted to the
problem of synthesizing new views of a scene from a set
of input photographs. A forerunner to this field was the
groundbreaking Aspen MovieMap project (Lippman 1980),
in which thousands of images of Aspen Colorado were cap-
tured from a moving car, registered to a street map of the
city, and stored on laserdisc. A user interface enabled in-
teractively moving through the images as a function of the
desired path of the user. Additional features included a navi-
gation map of the city overlaid on the image display, and the
ability to touch any building in the current field of view and
jump to a facade of that building. The system also allowed
attaching metadata such as restaurant menus and historical
images with individual buildings. Recently, several compa-
nies, such as Google6 and EveryScape7 have begun creating
similar “surrogate travel” applications that can be viewed in
a web browser. Our work can be seen as a way to automati-
cally create MovieMaps from unorganized collections of im-
ages. (In contrast, the Aspen MovieMap involved a team of
over a dozen people working over a few years.) A number
of our visualization, navigation, and annotation capabilities
are similar to those in the original MovieMap work, but in
an improved and generalized form.

More recent work in IBR has focused on techniques
for new view synthesis, e.g., (Chen and Williams 1993;
McMillan and Bishop 1995; Gortler et al. 1996; Levoy and
Hanrahan 1996; Seitz and Dyer 1996; Aliaga et al. 2003;
Zitnick et al. 2004; Buehler et al. 2001). In terms of appli-
cations, Aliaga et al.’s (2003) Sea of Images work is perhaps
closest to ours in its use of a large collection of images taken
throughout an architectural space; the same authors address
the problem of computing consistent feature matches across
multiple images for the purposes of IBR (Aliaga et al. 2003).
However, our images are casually acquired by different pho-
tographers, rather than being taken on a fixed grid with a
guided robot.

In contrast to most prior work in IBR, our objective is
not to synthesize a photo-realistic view of the world from
all viewpoints per se, but to browse a specific collection of

6Google Maps, http://maps.google.com.
7Everyscape, http://www.everyscape.com.

Int J Comput Vis

photographs in a 3D spatial context that gives a sense of
the geometry of the underlying scene. Our approach there-
fore uses an approximate plane-based view interpolation
method and a non-photorealistic rendering of background
scene structures. As such, we side-step the more challenging
problems of reconstructing full surface models (Debevec et
al. 1996; Teller et al. 2003), light fields (Gortler et al. 1996;
Levoy and Hanrahan 1996), or pixel-accurate view inter-
polations (Chen and Williams 1993; McMillan and Bishop
1995; Seitz and Dyer 1996; Zitnick et al. 2004). The bene-
fit of doing this is that we are able to operate robustly with
input imagery that is beyond the scope of previous IBM and
IBR techniques.

2.5 Image Browsing, Retrieval, and Annotation

There are many techniques and commercial products for
browsing sets of photos and much research on the subject
of how people tend to organize photos, e.g., (Rodden and
Wood 2003). Many of these techniques use metadata, such
as keywords, photographer, or time, as a basis of photo or-
ganization (Cooper et al. 2003).

There has recently been growing interest in using geo-
location information to facilitate photo browsing. In particu-
lar, the World-Wide Media Exchange (WWMX) (Toyama et
al. 2003) arranges images on an interactive 2D map. Photo-
Compas (Naaman et al. 2004) clusters images based on time
and location. Realityflythrough (McCurdy and Griswold
2005) uses interface ideas similar to ours for exploring video
from camcorders instrumented with GPS and tilt sensors,
and Kadobayashi and Tanaka (2005) present an interface
for retrieving images using proximity to a virtual camera. In
Photowalker (Tanaka et al. 2002), a user can manually au-
thor a walkthrough of a scene by specifying transitions be-
tween pairs of images in a collection. In these systems, loca-
tion is obtained from GPS or is manually specified. Because
our approach does not require GPS or other instrumentation,
it has the advantage of being applicable to existing image
databases and photographs from the Internet. Furthermore,
many of the navigation features of our approach exploit the
computation of image feature correspondences and sparse
3D geometry, and therefore go beyond what has been possi-
ble in these previous location-based systems.

Many techniques also exist for the related task of retriev-
ing images from a database. One particular system related to
our work is Video Google (Sivic and Zisserman 2003) (not
to be confused with Google’s own video search), which al-
lows a user to select a query object in one frame of video and
efficiently find that object in other frames. Our object-based
navigation mode uses a similar idea, but extended to the 3D
domain.

A number of researchers have studied techniques for au-
tomatic and semi-automatic image annotation, and annota-
tion transfer in particular. The LOCALE system (Naaman

et al. 2003) uses proximity to transfer labels between geo-
referenced photographs. An advantage of the annotation ca-
pabilities of our system is that our feature correspondences
enable transfer at much finer granularity; we can transfer
annotations of specific objects and regions between images,
taking into account occlusions and the motions of these ob-
jects under changes in viewpoint. This goal is similar to that
of augmented reality (AR) approaches (e.g., Feiner et al.
1997), which also seek to annotate images. While most AR
methods register a 3D computer-generated model to an im-
age, we instead transfer 2D image annotations to other im-
ages. Generating annotation content is therefore much eas-
ier. (We can, in fact, import existing annotations from pop-
ular services like Flickr.) Annotation transfer has been also
explored for video sequences (Irani and Anandan 1998).

Finally, Johansson and Cipolla (2002) have developed a
system where a user can take a photograph, upload it to a
server where it is compared to an image database, and re-
ceive location information. Our system also supports this
application in addition to many other capabilities (visual-
ization, navigation, annotation, etc.).

3 Overview

Our objective is to geometrically register large photo col-
lections from the Internet and other sources, and to use
the resulting 3D camera and scene information to facili-
tate a number of applications in visualization, localization,
image browsing, and other areas. This section provides an
overview of our approach and summarizes the rest of the
paper.

The primary technical challenge is to robustly match and
reconstruct 3D information from hundreds or thousands of
images that exhibit large variations in viewpoint, illumina-
tion, weather conditions, resolution, etc., and may contain
significant clutter and outliers. This kind of variation is what
makes Internet imagery (i.e., images returned by Internet
image search queries from sites such as Flickr and Google)
so challenging to work with.

In tackling this problem, we take advantage of two recent
breakthroughs in computer vision, namely feature-matching
and structure from motion, as reviewed in Sect. 2. The back-
bone of our work is a robust SfM approach that reconstructs
3D camera positions and sparse point geometry for large
datasets and has yielded reconstructions for dozens of fa-
mous sites ranging from Notre Dame Cathedral to the Great
Wall of China. Section 4 describes this approach in detail,
as well as methods for aligning reconstructions to satellite
and map data to obtain geo-referenced camera positions and
geometry.

One of the most exciting applications for these recon-
structions is 3D scene visualization. However, the sparse

Int J Comput Vis

points produced by SfM methods are by themselves very
limited and do not directly produce compelling scene ren-
derings. Nevertheless, we demonstrate that this sparse SfM-
derived geometry and camera information, along with mor-
phing and non-photorealistic rendering techniques, is suffi-
cient to provide compelling view interpolations as described
in 5. Leveraging this capability, Section 6 describes a novel
photo explorer interface for browsing large collections of
photographs in which the user can virtually explore the 3D
space by moving from one image to another.

Often, we are interested in learning more about the con-
tent of an image, e.g., “which statue is this?” or “when was
this building constructed?” A great deal of annotated image
content of this form already exists in guidebooks, maps, and
Internet resources such as Wikipedia8 and Flickr. However,
the image you may be viewing at any particular time (e.g.,
from your cell phone camera) may not have such annota-
tions. A key feature of our system is the ability to transfer
annotations automatically between images, so that informa-
tion about an object in one image is propagated to all other
images that contain the same object (Sect. 7).

Section 8 presents extensive results on 11 scenes, with
visualizations and an analysis of the matching and recon-
struction results for these scenes. We also briefly describe
Photosynth, a related 3D image browsing tool developed by
Microsoft Live Labs that is based on techniques from this
paper, but also adds a number of interesting new elements.
Finally, we conclude with a set of research challenges for
the community in Sect. 9.

4 Reconstructing Cameras and Sparse Geometry

The visualization and browsing components of our system
require accurate information about the relative location, ori-
entation, and intrinsic parameters such as focal lengths for
each photograph in a collection, as well as sparse 3D scene
geometry. A few features of our system require the absolute
locations of the cameras, in a geo-referenced coordinate
frame. Some of this information can be provided with GPS
devices and electronic compasses, but the vast majority of
existing photographs lack such information. Many digital
cameras embed focal length and other information in the
EXIF tags of image files. These values are useful for ini-
tialization, but are sometimes inaccurate.

In our system, we do not rely on the camera or any other
piece of equipment to provide us with location, orientation,
or geometry. Instead, we compute this information from the
images themselves using computer vision techniques. We
first detect feature points in each image, then match feature
points between pairs of images, and finally run an iterative,

8Wikipedia, http://www.wikipedia.org.

robust SfM procedure to recover the camera parameters. Be-
cause SfM only estimates the relative position of each cam-
era, and we are also interested in absolute coordinates (e.g.,
latitude and longitude), we use an interactive technique to
register the recovered cameras to an overhead map. Each of
these steps is described in the following subsections.

4.1 Keypoint Detection and Matching

The first step is to find feature points in each image. We
use the SIFT keypoint detector (Lowe 2004), because of its
good invariance to image transformations. Other feature de-
tectors could also potentially be used; several detectors are
compared in the work of Mikolajczyk et al. (2005). In addi-
tion to the keypoint locations themselves, SIFT provides a
local descriptor for each keypoint. A typical image contains
several thousand SIFT keypoints.

Next, for each pair of images, we match keypoint descrip-
tors between the pair, using the approximate nearest neigh-
bors (ANN) kd-tree package of Arya et al. (1998). To match
keypoints between two images I and J , we create a kd-tree
from the feature descriptors in J , then, for each feature in
I we find the nearest neighbor in J using the kd-tree. For
efficiency, we use ANN’s priority search algorithm, limiting
each query to visit a maximum of 200 bins in the tree. Rather
than classifying false matches by thresholding the distance
to the nearest neighbor, we use the ratio test described by
Lowe (2004): for a feature descriptor in I , we find the two
nearest neighbors in J , with distances d1 and d2, then accept
the match if d1

d2
< 0.6. If more than one feature in I matches

the same feature in J , we remove all of these matches, as
some of them must be spurious.

After matching features for an image pair (I, J), we
robustly estimate a fundamental matrix for the pair us-
ing RANSAC (Fischler and Bolles 1981). During each
RANSAC iteration, we compute a candidate fundamental
matrix using the eight-point algorithm (Hartley and Zis-
serman 2004), normalizing the problem to improve robust-
ness to noise (Hartley 1997). We set the RANSAC outlier
threshold to be 0.6% of the maximum image dimension, i.e.,
0.006 max(image width, image height) (about six pixels for
a 1024×768 image). The F-matrix returned by RANSAC is
refined by running the Levenberg-Marquardt algorithm (No-
cedal and Wright 1999) on the eight parameters of the F-
matrix, minimizing errors for all the inliers to the F-matrix.
Finally, we remove matches that are outliers to the recov-
ered F-matrix using the above threshold. If the number of
remaining matches is less than twenty, we remove all of the
matches from consideration.

After finding a set of geometrically consistent matches
between each image pair, we organize the matches into
tracks, where a track is a connected set of matching key-
points across multiple images. If a track contains more than

Int J Comput Vis

Fig. 1 Photo connectivity
graph. This graph contains a
node for each image in a set of
photos of the Trevi Fountain,
with an edge between each pair
of photos with matching
features. The size of a node is
proportional to its degree. There
are two dominant clusters
corresponding to day (a) and
night time (d) photos. Similar
views of the facade cluster
together in the center, while
nodes in the periphery, e.g., (b)
and (c), are more unusual (often
close-up) views

one keypoint in the same image, it is deemed inconsistent.
We keep consistent tracks containing at least two keypoints
for the next phase of the reconstruction procedure.

Once correspondences are found, we can construct an im-
age connectivity graph, in which each image is a node and
an edge exists between any pair of images with matching
features. A visualization of an example connectivity graph
for the Trevi Fountain is Fig. 1. This graph embedding was
created with the neato tool in the Graphviz toolkit.9 Neato
represents the graph as a mass-spring system and solves for
an embedding whose energy is a local minimum.

The image connectivity graph of this photo set has sev-
eral distinct features. The large, dense cluster in the cen-
ter of the graph consists of photos that are all fairly wide-
angle, frontal, well-lit shots of the fountain (e.g., image (a)).
Other images, including the “leaf” nodes (e.g., images (b)
and (c)) and night time images (e.g., image (d)), are more
loosely connected to this core set. Other connectivity graphs
are shown in Figs. 9 and 10.

4.2 Structure from Motion

Next, we recover a set of camera parameters (e.g., rotation,
translation, and focal length) for each image and a 3D lo-
cation for each track. The recovered parameters should be
consistent, in that the reprojection error, i.e., the sum of dis-
tances between the projections of each track and its corre-
sponding image features, is minimized. This minimization
problem can formulated as a non-linear least squares prob-
lem (see Appendix 1) and solved using bundle adjustment.
Algorithms for solving this non-linear problem, such as No-
cedal and Wright (1999), are only guaranteed to find lo-
cal minima, and large-scale SfM problems are particularly
prone to getting stuck in bad local minima, so it is important

9Graphviz—graph visualization software, http://www.graphviz.org/.

to provide good initial estimates of the parameters. Rather
than estimating the parameters for all cameras and tracks at
once, we take an incremental approach, adding in one cam-
era at a time.

We begin by estimating the parameters of a single pair
of cameras. This initial pair should have a large number
of matches, but also have a large baseline, so that the ini-
tial two-frame reconstruction can be robustly estimated. We
therefore choose the pair of images that has the largest num-
ber of matches, subject to the condition that those matches
cannot be well-modeled by a single homography, to avoid
degenerate cases such as coincident cameras. In particular,
we find a homography between each pair of matching im-
ages using RANSAC with an outlier threshold of 0.4% of
max(image width, image height), and store the percentage
of feature matches that are inliers to the estimated homogra-
phy. We select the initial image pair as that with the lowest
percentage of inliers to the recovered homography, but with
at least 100 matches. The camera parameters for this pair are
estimated using Nistér’s implementation of the five point al-
gorithm (Nistér 2004),10 then the tracks visible in the two
images are triangulated. Finally, we do a two frame bundle
adjustment starting from this initialization.

Next, we add another camera to the optimization. We
select the camera that observes the largest number of
tracks whose 3D locations have already been estimated,
and initialize the new camera’s extrinsic parameters using
the direct linear transform (DLT) technique (Hartley and
Zisserman 2004) inside a RANSAC procedure. For this
RANSAC step, we use an outlier threshold of 0.4% of
max(image width, image height). In addition to providing
an estimate of the camera rotation and translation, the DLT
technique returns an upper-triangular matrix K which can

10We only choose the initial pair among pairs for which a focal length
estimate is available for both cameras, and therefore a calibrated rela-
tive pose algorithm can be used.

Int J Comput Vis

be used as an estimate of the camera intrinsics. We use K
and the focal length estimated from the EXIF tags of the
image to initialize the focal length of the new camera (see
Appendix 1 for more details). Starting from this initial set of
parameters, we run a bundle adjustment step, allowing only
the new camera, and the points it observes, to change; the
rest of the model is held fixed.

Finally, we add points observed by the new camera into
the optimization. A point is added if it is observed by at least
one other recovered camera, and if triangulating the point
gives a well-conditioned estimate of its location. We esti-
mate the conditioning by considering all pairs of rays that
could be used to triangulate that point, and finding the pair
of rays with the maximum angle of separation. If this max-
imum angle is larger than a threshold (we use 2.0 degrees
in our experiments), then the point is triangulated. Note that
this check will tend to reject points at infinity. While points
at infinity can be very useful for estimating accurate camera
rotations, we have observed that they can sometimes cause
problems, as using noisy camera parameters to triangulate
points at infinity can result in points at erroneous, finite 3D
locations. Once the new points have been added, we run a
global bundle adjustment to refine the entire model. We find
the minimum error solution using the sparse bundle adjust-
ment library of Lourakis and Argyros (2004).

This procedure is repeated, one camera at a time, until no
remaining camera observes enough reconstructed 3D points
to be reliably reconstructed (we use a cut-off of twenty
points to stop the reconstruction process). Therefore, in gen-
eral, only a subset of the images will be reconstructed. This
subset is not selected beforehand, but is determined by the
algorithm while it is running in the form of a termination
criterion.

For increased robustness and speed, we make a few mod-
ifications to the basic procedure outlined above. First, af-
ter every run of the optimization, we detect outlier tracks
that contain at least one keypoint with a high reprojec-
tion error, and remove these tracks from the optimiza-
tion. The outlier threshold for a given image adapts to the
current distribution of reprojection errors for that image.
In particular, for a given image I , we compute d80, the
80th percentile of the reprojection errors for that image,
and use clamp(2.4d80,4.0,16.0) as the outlier threshold
(where clamp(x, a, b) = min(max(x, a), b)). The effect of
this clamping function is that all points with a reprojection
error above 16.0 pixels will be rejected as outliers, and all
points with a reprojection error less than 4.0 will be kept
as inliers, with the exact threshold lying between these two
values. After rejecting outliers, we rerun the optimization,
rejecting outliers after each run, until no more outliers are
detected.

Second, rather than adding a single camera at a time into
the optimization, we add multiple cameras. To select which

Fig. 2 Estimated camera locations for the Great Wall data set

cameras to add, we first find the camera with the greatest
number of matches, M , to the existing 3D points, then add
any camera with at least 0.75M matches to the existing 3D
points.

We have also found that estimating radial distortion pa-
rameters for each camera can have a significant effect on
the accuracy of the reconstruction, because many consumer
cameras and lenses produce images with noticeable distor-
tion. We therefore estimate two radial distortion parameters
κ1 and κ2, for each camera. To map a projected 2D point
p = (px,py) to a distorted point p′ = (x′, y′), we use the
formula:

ρ2 =
(

px

f

)2

+
(

py

f

)2

,

α = κ1ρ
2 + κ2ρ

4,

p′ = αp

where f is the current estimate of the focal length (note that
we assume that the center of distortion is the center of the
image, and that we define the center of the image to be the
origin of the image coordinate system). When initializing
new cameras, we set κ1 = κ2 = 0, but these parameters are
freed during bundle adjustment. To avoid undesirably large
values of these parameters, we add a term λ(κ2

1 + κ2
2) to the

objective function for each camera (we use a value of 10.0
for λ in our experiments). This term discourages values of
κ1 and κ2 which have a large magnitude.

Figure 2 shows an example of reconstructed points and
cameras (rendered as frusta), for the Great Wall data set, su-
perimposed on one of the input images, computed with this
method. Many more results are presented in Sect. 8. For the
various parameter settings and thresholds described in this
section, we used the same values for each of the image sets
in Sect. 8, and the reconstruction algorithm ran completely
automatically for most of the sets. Occasionally, we found

Int J Comput Vis

that the technique for selecting the initial image pair would
choose a pair with insufficient baseline to generate a good
initial reconstruction. This usually occurs when the selected
pair has a large number of mismatched features, which can
appear to be outliers to a dominant homography. When this
happens, we specify the initial pair manually. Also, in some
of our Internet data sets there are a small number of “bad”
images, such as fisheye images, montages of several differ-
ent images, and so on, which our camera model cannot han-
dle well. These images tend to be have very poor location
estimates, and in our current system these must be identified
manually if the user wishes to remove them.

The total running time of the SfM procedure for the
data sets we experimented with ranged from about three
hours (for the Great Wall collection, 120 photos processed
and matched, and 82 ultimately reconstructed) to more than
12 days (for Notre Dame, 2,635 photos processed and
matched, and 598 photos reconstructed). Sect. 8 lists the
running time for the complete pipeline (feature detection,
matching, and SfM) for each data set. The running time is
dominated by two steps: the pairwise matching, and the in-
cremental bundle adjustment. The complexity of the match-
ing stage is quadratic in the number of input photos, but
each pair of images can be matched independently, so the
running time can be improved by a constant factor through
parallelization. The speed of the bundle adjustment phase
depends on several factors, including the number of pho-
tos and points, and the degree of coupling between cameras
(e.g., when many cameras observe the same set of points, the
bundle adjustment tends to become slower). In the future, we
plan to work on speeding up the reconstruction process, as
described in Sect. 9.

4.3 Geo-Registration

The SfM procedure estimates relative camera locations. The
final step of the location estimation process is to optionally
align the model with a geo-referenced image or map (such
as a satellite image, floor plan, or digital elevation map) so
as to determine the absolute geocentric coordinates of each
camera. Most of the features of the photo explorer can work
with relative coordinates, but others, such as displaying an
overhead map require absolute coordinates.

The estimated camera locations are, in theory, related
to the absolute locations by a similarity transform (global
translation, rotation, and uniform scale). To determine the
correct transformation the user interactively rotates, trans-
lates, and scales the model until it is in agreement with a
provided image or map. To assist the user, we estimate the
“up” or gravity vector using the method of Szeliski (2006).
The 3D points, lines, and camera locations are then ren-
dered superimposed on the alignment image, using an or-
thographic projection with the camera positioned above the

Fig. 3 Example registration of cameras to an overhead map. Here,
the cameras and recovered line segments from the Prague data set are
shown superimposed on an aerial image. (Aerial image shown here and
in Fig. 4 courtesy of Gefos, a.s.11 and Atlas.cz)

scene, pointed downward. If the up vector was estimated
correctly, the user needs only to rotate the model in 2D,
rather than 3D. Our experience is that it is fairly easy,
especially in urban scenes, to perform this alignment by
matching the recovered points to features, such as building
façades, visible in the image. Figure 3 shows a screenshot of
such an alignment.

In some cases the recovered scene cannot be aligned to
a geo-referenced coordinate system using a similarity trans-
form. This can happen if the SfM procedure fails to obtain a
fully metric reconstruction of the scene, or because of low-
frequency drift in the recovered point and camera locations.
These sources of error do not have a significant effect on
many of the navigation controls used in our explorer inter-
face, as the error is not usually locally noticeable, but are
problematic when an accurate model is desired.

One way to “straighten out” the recovered scene is to pin
down a sparse set of ground control points or cameras to
known 3D locations (acquired, for instance, from GPS tags
attached to a few images) by adding constraints to the SfM
optimization. Alternatively, a user can manually specify cor-
respondences between points or cameras and locations in
an image or map, as in the work of Robertson and Cipolla
(2002).

4.3.1 Aligning to Digital Elevation Maps

For landscapes and other very large scale scenes, we can
take advantage of Digital Elevation Maps (DEMs), used for
example in Google Earth12 and with coverage of most of

12Google Earth, http://earth.google.com.

Int J Comput Vis

the United States available through the U.S. Geological Sur-
vey.13 To align point cloud reconstructions to DEMs, we
manually specify a few correspondences between the point
cloud and the DEM, and estimate a 3D similarity trans-
form to determine an initial alignment. We then re-run the
SfM optimization with an additional objective term to fit the
specified DEM points. In the future, as more geo-referenced
ground-based imagery becomes available (e.g., through sys-
tems like WWMX (Toyama et al. 2003) or Windows Live
Local14), this manual step will no longer be necessary.

4.4 Scene Representation

After reconstructing a scene, we optionally detect 3D line
segments in the scene using a technique similar to that of
Schmid and Zisserman (1997). Once this is done, the scene
can be saved for viewing in our interactive photo explorer.
In the viewer, the reconstructed scene model is represented
with the following data structures:

• A set of points P = {p1,p2, . . . , pn}. Each point consists
of a 3D location and a color obtained from one of the
image locations where that point is observed.

• A set of cameras, C = {C1,C2, . . . ,Ck}. Each camera Cj

consists of an image Ij , a rotation matrix Rj , a translation
tj , and a focal length fj .

• A mapping, Points, between cameras and the points they
observe. That is, Points(C) is the subset of P containing
the points observed by camera C.

• A set of 3D line segments L= {l1, l2, . . . , lm} and a map-
ping, Lines, between cameras and the set of lines they
observe.

We also pre-process the scene to compute a set of 3D
planes for each camera or pair of cameras:

• For each camera Ci , we compute a 3D plane, Plane(Ci),
by using RANSAC to robustly fit a plane to Points(Ci).

• For each pair of neighboring cameras (i.e., cameras
which view at least three points in common), Ci,Cj ,
we compute a 3D plane, CommonPlane(Ci,Cj) by us-
ing RANSAC to fit a plane to Points(Ci) ∪ Points(Cj).

5 Photo Explorer Rendering

Once a set of photographs of a scene has been registered,
the user can browse the photographs with our photo explorer
interface. Two important aspects of this interface are how we
render the explorer display, described in this section, and the
navigation controls, described in Sect. 6.

13U.S. Geological Survey, http://www.usgs.com.
14Windows Live Local—Virtual Earth Technology Preview, http://
preview.local.live.com.

5.1 User Interface Layout

Figure 4 (left-hand image) shows a screenshot from the main
window of our photo exploration interface. The components
of this window are the main view, which fills the window,
and three overlay panes: an information and search pane on
the left, a thumbnail pane along the bottom, and a map pane
in the upper-right corner.

The main view shows the world as seen from a virtual
camera controlled by the user. This view is not meant to
show a photo-realistic rendering of the scene, but rather to
display photographs in spatial context and give a sense of
the geometry of the true scene.

The information pane appears when the user visits a pho-
tograph. This pane displays information about that photo,
including its name, the name of the photographer, and the
date and time when it was taken. In addition, this pane con-
tains controls for searching for other photographs with cer-
tain geometric relations to the current photo, as described in
Sect. 6.2.

The thumbnail pane shows the results of search opera-
tions as a filmstrip of thumbnails. When the user mouses
over a thumbnail, the corresponding image Ij is projected
onto Plane(Cj) to show the content of that image and how
it is situated in space. The thumbnail panel also has con-
trols for sorting the current thumbnails by date and time and
viewing them as a slideshow.

Finally, the map pane displays an overhead view of scene
that tracks the user’s position and heading.

5.2 Rendering the Scene

The main view displays a rendering of the scene from the
current viewpoint. The cameras are rendered as frusta. If
the user is visiting a camera, the back face of that camera
frustum is texture-mapped with an opaque, full-resolution
version of the photograph, so that the user can see it in de-
tail. The back faces of the other cameras frusta are texture-
mapped with a low-resolution, semi-transparent thumbnail
of the photo. The scene itself is rendered with the recovered
points and lines.

We also provide a non-photorealistic rendering mode that
provides more attractive visualizations. This mode uses a
washed-out coloring to give an impression of scene appear-
ance and geometry, but is abstract enough to be forgiving
of the lack of detailed geometry. To generate the rendering,
we project a blurred, semi-transparent version of each im-
age Ij onto Plane(Cj) and use alpha blending to combine
the projections. An example rendering using projected im-
ages overlaid with line segments is shown in Fig. 4.

5.3 Transitions between Photographs

An important element of our user interface is the method
used to generate transitions when the user moves between

Int J Comput Vis

Fig. 4 Screenshots from the
explorer interface. Left: when
the user visits a photo, that
photo appears at full-resolution,
and information about it appears
in a pane on the left. Right:
a view looking down on the
Prague dataset, rendered in a
non-photorealistic style

photos in the explorer. Most existing photo browsing tools
cut from one photograph to the next, sometimes smoothing
the transition by cross-fading. In our case, the geometric in-
formation we infer about the photographs allows us to use
camera motion and view interpolation to make transitions
more visually compelling and to emphasize the spatial rela-
tionships between the photographs.

5.3.1 Camera Motion

When the virtual camera moves from one photograph to an-
other, the system linearly interpolates the camera position
between the initial and final camera locations, and the cam-
era orientation between unit quaternions representing the
initial and final orientations. The field of view of the virtual
camera is also interpolated so that when the camera reaches
its destination, the destination image will fill as much of the
screen as possible. The camera path timing is non-uniform,
easing in and out of the transition.

If the camera moves as the result of an object selection
(Sect. 6.3), the transition is slightly different. Before the
camera starts moving, it orients itself to point at the mean
of the selected points. The camera remains pointed at the
mean as it moves, so that the selected object stays fixed in
the view. This helps keep the object from undergoing large,
distracting motions during the transition. The final orienta-
tion and focal length are computed so that the selected object
is centered and fills the screen.

5.3.2 View Interpolation

During camera transitions, we also display in-between im-
ages. We have experimented with two simple techniques for
morphing between the start and destination photographs: tri-
angulating the point cloud and using planar impostors.

Triangulated Morphs To create a triangulated morph be-
tween two cameras Cj and Ck , we first compute a 2D
Delaunay triangulation for image Ij using the projections
of Points(Cj) into Ij . The projections of Lines(Cj) into

Ij are imposed as edge constraints on the triangulation
(Chew 1987). The resulting constrained Delaunay triangu-
lation may not cover the entire image, so we overlay a grid
onto the image and add to the triangulation each grid point
not contained inside the original triangulation. Each added
grid point is associated with a 3D point on Plane(Cj). The
connectivity of the triangulation is then used to create a 3D
mesh; we project Ij onto the mesh in order to texture map
it. We compute a mesh for Ck and texture map it in the same
way.

Then, to render the transition between Cj and Ck , we
move the virtual camera from Cj and Ck while cross-fading
between the two meshes (i.e., the texture-mapped mesh for
Cj is faded out while the texture-mapped mesh for Ck is
faded in, with the depth buffer turned off to avoid pop-
ping). While this technique does not use completely accu-
rate geometry, the meshes are often sufficient to give a sense
of the 3D geometry of the scene. For instance, this approach
works well for many transitions in the Great Wall data set
(shown as a still in Fig. 2, and as an animation in the video
on the project website). However, missing geometry and
outlying points can sometimes cause distracting artifacts.

Planar Morphs We have also experimented with using
planes, rather than 3D meshes, as our projection surfaces.
To create a morph between cameras Cj and Ck using a
planar impostor, we simply project the two images Ij and
Ik onto CommonPlane(Cj ,Ck) and cross-fade between the
projected images as the camera moves from Cj to Ck . The
resulting in-betweens are not as faithful to the underlying
geometry as the triangulated morphs, tending to stabilize
only a dominant plane in the scene, but the resulting arti-
facts are usually less objectionable, perhaps because we are
used to seeing distortions caused by viewing planes from
different angles. Because of the robustness of this method,
we prefer to use it rather than triangulation as the default
for transitions. Example morphs using both techniques are
shown in the video on our project website.15

15Photo tourism website, http://phototour.cs.washington.edu/.

Int J Comput Vis

There are a few special cases which must be handled
differently during transitions. First, if the two cameras ob-
serve no common points, our system currently has no ba-
sis for interpolating the images. Instead, we fade out the
start image, move the camera to the destination as usual,
then fade in the destination image. Second, if the normal to
CommonPlane(Cj ,Ck) is nearly perpendicular to the aver-
age of the viewing directions of Cj and Ck , the projected im-
ages would undergo significant distortion during the morph.
In this case, we revert to using a plane passing through the
mean of the points common to both views, whose normal is
the average of the viewing directions. Finally, if the vanish-
ing line of CommonPlane(Cj ,Ck) is visible in images Ij or
Ik (as would be the case if this plane were the ground plane,
and the horizon were visible in either image), it is impossi-
ble to project the entirety of Ij or Ik onto the plane. In this
case, we project as much as possible of Ij and Ik onto the
plane, and project the rest onto the plane at infinity.

6 Photo Explorer Navigation

Our image exploration tool supports several modes for
navigating through the scene and finding interesting pho-
tographs. These modes include free-flight navigation, find-
ing related views, object-based navigation, and viewing
slideshows.

6.1 Free-Flight Navigation

The free-flight navigation controls include some of the stan-
dard 3D motion controls found in many games and 3D view-
ers. The user can move the virtual camera forward, back,
left, right, up, and down, and can control pan, tilt, and zoom.
This allows the user to freely move around the scene and
provides a simple way to find interesting viewpoints and
nearby photographs.

At any time, the user can click on a frustum in the main
view, and the virtual camera will smoothly move until it
is coincident with the selected camera. The virtual camera
pans and zooms so that the selected image fills as much of
the main view as possible.

6.2 Moving Between Related Views

When visiting a photograph Ccurr, the user has a snapshot
of the world from a single point of view and an instant in
time. The user can pan and zoom to explore the photo, but
might also want to see aspects of the scene beyond those
captured in a single picture. He or she might wonder, for
instance, what lies just outside the field of view, or to the
left of the objects in the photo, or what the scene looks like
at a different time of day.

To make it easier to find related views such as these, we
provide the user with a set of “geometric” browsing tools.
Icons associated with these tools appear in two rows in the
information pane, which appears when the user is visiting a
photograph. These tools find photos that depict parts of the
scene with certain spatial relations to what is currently in
view. The mechanism for implementing these search tools
is to project the points observed by the current camera,
Points(Ccurr), into other photos (or vice versa), and select
views based on the projected motion of the points. For in-
stance, to answer the query “show me what’s to the left of
this photo,” we search for a photo in which Points(Ccurr)

appear to have moved right.
The geometric browsing tools fall into two categories:

tools for selecting the scale at which to view the scene, and
directional tools for looking in a particular direction (e.g.,
left or right).

There are three scaling tools: (1) find details, or higher-
resolution close-ups, of the current photo, (2) find similar
photos, and (3) find zoom-outs, or photos that show more
surrounding context. If the current photo is Ccurr, these tools
search for appropriate neighboring photos Cj by estimating
the relative “apparent size” of set of points in each image,
and comparing these apparent sizes. Specifically, to estimate
the apparent size of a set of points P in a image I , we project
the points into I , compute the bounding box of the projec-
tions that are inside the image, and calculate the ratio of the
area of the bounding box (in pixels) to the area of the image.
We refer to this quantity as Size(P,C).

When one of these tools is activated, we classify each
neighbor Cj as:

• a detail of Ccurr if Size(Points(Cj),Ccurr) < 0.75 and
most points visible in Ccurr are visible in Cj

• similar to Ccurr if

0.75 <
Size(Points(Ccurr),Cj)

Size(Points(Ccurr),Ccurr)
< 1.3

and the angle between the viewing directions of Ccurr and
Cj is less than a threshold of 10 degrees

• a zoom-out of Ccurr if Ccurr is a detail of Cj .

The results of any of these searches are displayed in the
thumbnail pane (sorted by increasing apparent size, in the
case of details and zoom-outs). These tools are useful for
viewing the scene in more detail, comparing similar views
of an object which differ in other respects, such as time of
day, season, and year, and for “stepping back” to see more
of the scene.

The directional tools give the user a simple way to “step”
left or right, i.e., to see more of the scene in a particular
direction. For each camera, we compute a left and right
neighbor, and link them to arrows displayed in the infor-
mation pane. To find a left and right image for camera Cj ,

Int J Comput Vis

Fig. 5 Object-based
navigation. The user drags a
rectangle around Neptune in one
photo, and the system finds a
new, high-resolution photograph

we compute the average 2D motion mjk of the projections
of Points(Cj) from image Ij to each neighboring image Ik .
If the angle between mjk and the desired direction (i.e., left
or right), is small, and the apparent sizes of Points(Cj) in
both images are similar, Ck is a candidate left or right image
to Cj . Out of all the candidates, we select the left of right
image to be the image Ik whose motion magnitude ‖mjk‖ is
closest to 20% of the width of image Ij .

6.3 Object-Based Navigation

Another search query our system supports is “show me pho-
tos of this object,” where the object in question can be di-
rectly selected in a photograph or in the point cloud. This
type of search, applied to video in (Sivic and Zisserman
2003), is complementary to, and has certain advantages over,
keyword search. Being able to select an object is especially
useful when exploring a scene—when the user comes across
an interesting object, direct selection is an intuitive way to
find a better picture of that object.

In our photo exploration system, the user selects an object
by dragging a 2D box around a region of the current photo
or the point cloud. All points whose projections are inside
the box form the set of selected points, S. Our system then
searches for the “best” photo of S by scoring each image in
the database based on how well it represents the selection.
The top scoring photo is chosen as the representative view,
and the virtual camera is moved to that image. Other images
with scores above a threshold are displayed in the thumb-
nail pane, sorted in descending order by score. An example
object selection interaction is shown in Fig. 5.

Our view scoring function is based on three criteria:
(1) the visibility of the points in S, (2) the angle from which
the points in S are viewed, and (3) the image resolution. For
each image Ij , we compute the score as a weighted sum of
three terms, Evisible, Eangle, and Edetail. Details of the com-
putation of these terms can be found in Appendix 2.

The set S can sometimes contain points that the user did
not intend to select, especially occluded points that happen
to project inside the selection rectangle. If we had complete
knowledge of visibility, we could cull such hidden points.

Because we only have a sparse model, however, we use a
set of heuristics to prune the selection. If the selection was
made while visiting an image Ij , we can use the points that
are known to be visible from that viewpoint (Points(Cj)) to
refine the selection. In particular, we compute the 3 × 3 co-
variance matrix for the points in S ∩Points(Cj), and remove
all from S all points with a Mahalanobis distance greater
than 1.2 from the mean. If the selection was made while not
visiting an image, we instead compute a weighted mean and
covariance matrix for the entire set S. The weighting favors
points which are closer to the virtual camera, the idea be-
ing that those are more likely to be unoccluded than points
which are far away. Thus, the weight for each point is com-
puted as the inverse of its distance from the virtual camera.

6.4 Creating Stabilized Slideshows

Whenever the thumbnail pane contains more than one im-
age, its contents can be viewed as a slideshow by pressing
the “play” button in the pane. By default, the virtual camera
will move through space from camera to camera, pausing
at each image for a few seconds before proceeding to the
next. The user can also “lock” the camera, fixing it to the its
current position, orientation, and field of view. When the im-
ages in the thumbnail pane are all taken from approximately
the same location, this mode stabilizes the images, making
it easier to compare one image to the next. This mode is use-
ful for studying changes in scene appearance as a function
of time of day, season, year, weather patterns, etc. An exam-
ple stabilized slideshow from the Yosemite data set is shown
in the companion video.16

6.5 Photosynth

Our work on visualization of unordered photo collections
is being used in the Photosynth Technology Preview17 re-
leased by Microsoft Live Labs. Photosynth is a photo vi-
sualization tool that uses the same underlying data (camera

16Photo tourism website, http://phototour.cs.washington.edu/.
17Microsoft Live Labs, Photosynth technology preview, http://labs.
live.com/photosynth.

Int J Comput Vis

positions and points) as in our work and has a user inter-
face with many similarities to Photo Tourism, but also has
several important differences. In Photosynth, rather than the
user dragging a box around an object to see a detailed photo
of it, the system suggests different photos as the user moves
the mouse cursor around the screen. If a close-up of the
object that the cursor is hovering over is available, a semi-
transparent quadrilateral appears, highlighting that region of
the screen. When the user clicks on a quadrilateral the vir-
tual view moves to the selected photo. Photosynth also sup-
ports a “splatter” mode, in which the photos are viewed in
a 2D arrangement. The currently selected photo is placed in
the center of the arrangement, and the other photos are or-
dered by similarity in a spiral around the center photo. In the
2D mode, when a new photo is selected it becomes the new
center image, and the photos are rearranged smoothly. Tran-
sitions between 2D and 3D modes involve similarly fluid
rearrangement of the photos.

In order to support interactive browsing of large collec-
tions of high-resolution photos over a network connection,
Photosynth efficiently streams image data using a system
called Seadragon, which computes which parts of which
photos are visible on the screen, and at what resolution each
photo (or part of a photo) is viewed. Only the required data
is then sent over the network, and higher-resolution data is
smoothly blended onto the screen as it is received.

7 Enhancing Scenes

Our system allows users to add content to a scene in sev-
eral ways. First, the user can register their own photographs
to the scene at run-time, after the initial set of photos has
been registered. Second, users can annotate regions of im-
ages, and these annotations can be propagated to other im-
ages.

7.1 Registering New Photographs

New photographs can be registered on the fly, as follows.
First, the user switches to a mode where an overhead map
fills the view, opens a set of images, which are displayed in
the thumbnail panel, and drags and drops each image onto
its approximate location on the map. After each image has
been dropped, the system estimates the location, orientation,
and focal length of each new photo by running an abbrevi-
ated version of the SfM pipeline described in Sect. 4 at a
local level. First, SIFT keypoints are extracted and matched
to the keypoints of the twenty cameras closest to the ini-
tial location; the matches to each other camera are pruned to
contain geometrically consistent matches; the existing 3D
points corresponding to the matches are identified; and fi-
nally, these matches are used to refine the pose of the new

camera. After a set of photos has been dragged onto the map,
it generally takes around ten seconds to optimize the para-
meters for each new camera on our test machine, a 3.80 GHz
Intel Pentium 4.

7.2 Annotating Objects

Annotations are supported in other photo organizing tools,
but a unique feature of our system is that annotations can
be automatically transferred from one image to all other im-
ages that contain the same scene region(s).

In the photo explorer, the user can select a region of an
image and enter a textual annotation. The annotation is then
stored, along with the 3D points Sann which lie in the se-
lected area, and appears as a semi-transparent box around
the selected points. Once annotated, an object can be linked
to other sources of information, such as web sites, guide-
books, and video and audio clips.

When an annotation is created, it is automatically trans-
ferred to all other relevant photographs. To transfer an an-
notation to another image Ij , we first check whether the an-
notation is visible in Ij , and whether it is at an appropriate
scale for the image—that it neither fills the image entirely
nor labels a very small region of the image. To determine
visibility, we simply test that at least one of the annotated
points Sann is in Points(Cj). To check whether the annota-
tion is at an appropriate scale, we compute the apparent size,
Size(Sann,Cj), of the annotation in image Ij . If the annota-
tion is visible and 0.05 < Size(Sann,Cj) < 0.8, we transfer
the annotation to Cj . When the user visits Cj , the annotation
is displayed as a box around the annotated points, as shown
in Fig. 7.

Besides quickly enhancing a scene with semantic infor-
mation, the ability to transfer annotations has several ap-
plications. First, it enables a system in which a tourist can
take a photo (e.g., from a camera phone that runs our soft-
ware) and instantly see information about objects in the
scene super-imposed on the image. In combination with a
head-mounted display, such a capability could offer a highly
portable, computer-vision-based augmented reality system
(Feiner et al. 1997). Second, it makes labeling photographs
in preparation for keyword search more efficient. If an object
is annotated with a set of keywords in one photo, transfer-
ring the annotation to other photos enables multiple images
to be added to a keyword search database based on a single
annotation.

We can also leverage the many existing images that have
already been annotated. There are several sources of exist-
ing annotations. On Flickr, for instance, users can attach
notes to rectangular regions of photos. Tools such as the ESP
Game (von Ahn and Dabbish 2004) and LabelMe (Russell
et al. 2005) encourage users to label images on the web, and
have accumulated a database of annotations. By registering

Int J Comput Vis

Fig. 6 Photosynth technology
preview. This screenshot shows
a user exploring photos of
Piazza San Marco in Venice
(left) and St. Peter’s Basilica in
the Vatican (right)

Fig. 7 Example of annotation
transfer. Three regions were
annotated in the photograph on
the left; the annotations were
automatically transferred to the
other photographs, a few of
which are shown on the right.
Our system can handle partial
and full occlusions

such labeled images with an existing collection of photos
using our system, we could transfer the existing labels to
every other relevant photo in the system. Other images on
the web are implicitly annotated: for instance, an image on
a Wikipedia page is “annotated” with the URL of that page.
By registering such images, we could link other photos to
the same page.

8 Results

We have applied our system to several input photo collec-
tions, including “uncontrolled” sets consisting of images
downloaded from Flickr. In each case, our system detected
and matched features on the entire set of photos and auto-
matically identified and registered a subset corresponding
to one connected component of the scene. The uncontrolled
sets we have tested are as follows:

1. Notre Dame, a set of photos of the Notre Dame Cathe-
dral in Paris.

2. Mount Rushmore, a set of photos of Mount Rushmore
National Monument, South Dakota.

3. Trafalgar Square, a set of photos from Trafalgar Square,
London.

4. Yosemite, a set of photos of Half Dome in Yosemite Na-
tional Park.

5. Trevi Fountain, a set of photos of the Trevi Fountain in
Rome.

6. Sphinx, a set of photos of the Great Sphinx of Giza,
Egypt.

7. St. Basil’s, a set of photos of Saint Basil’s Cathedral in
Moscow.

8. Colosseum, a set of photos of the Colosseum in Rome.

Three other sets were taken in more controlled settings
(i.e., a single person with a single camera and lens):

1. Prague, a set of photos of the Old Town Square in
Prague.

2. Annecy, a set of photos of a street in Annecy, France.
3. Great Wall, a set of photos taken along the Great Wall

of China.

More information about these data sets (including the
number of input photos, number of registered photos, run-
ning time, and average reprojection error), is shown in Ta-
ble 1. The running times reported in this table were gen-
erated by running the complete pipeline on one or more
3.80 GHz Intel Pentium 4 processors. The keypoint detec-
tion and matching phases were run in parallel on ten proces-
sors, and the structure from motion algorithm was run on a
single processor.

Visualizations of these data sets are shown in Figs. 9
and 10. Please see the video and live demo on the project
website18 for a demonstration of features of our photo ex-

18Photo tourism website, http://phototour.cs.washington.edu/.

Int J Comput Vis

Fig. 8 A registered historical
photo. Left: Moon and Half
Dome, 1960. Photograph by
Ansel Adams. We registered this
historical photo to our Half
Dome model. Right: rendering
of DEM data for Half Dome
from where Ansel Adams was
standing, as estimated by our
system. The white border was
drawn manually for comparison
(DEM and color texture
courtesy of the U.S. Geological
Survey)

Table 1 Data sets. Each row lists information about each data set used

Collection Search term # photos # registered # points runtime error

Notre Dame notredame AND paris 2635 598 305535 12.7 days 0.616

Mt. Rushmore mount rushmore 1000 452 133994 2.6 days 0.444

Trafalgar Sq. trafalgar square 1893 278 27224 3.5 days 1.192

Yosemite halfdome AND yosemite 1882 678 264743 10.4 days 0.757

Trevi Fountain trevi AND rome 466 370 114742 20.5 hrs 0.698

Sphinx sphinx AND egypt 1000 511 206783 3.4 days 0.418

St. Basil’s basil AND red square 627 220 25782 23.0 hrs 0.816

Colosseum colosseum AND (rome OR roma) 1994 390 188306 5.0 days 1.360

Prague N/A 197 171 38921 3.1 hrs 0.731

Annecy N/A 462 424 196443 2.5 days 0.810

Great Wall N/A 120 81 24225 2.8 hrs 0.707

Collection, the name of the set; search term the search term used to gather the images; # photos, the number of photos in the input set; # registered
the number of photos registered; # points, the number of points in the final reconstruction; runtime, the approximate total time for reconstruction;
error, the mean reprojection error, in pixels, after optimization. The first eight data sets were gathered from the Internet, and the last three were
each captured by a single person

plorer, including object selection, related image selection,
morphing, and annotation transfer, on several data sets.

For the Half Dome data set, after initially constructing
the model, we aligned it to a digital elevation map using
the approach described in Sect. 4.3.1. We then registered a
historical photo, Ansel Adam’s “Moon and Half Dome,” to
the data set, by dragging and dropping it onto the model
using the method described in Sect. 7.1. Figure 8 shows a
synthetic rendering of the scene from the estimated position
where Ansel Adams took the photo.

8.1 Discussion

The graphs shown in the third column of Figs. 9 and 10
contain edges between pairs of photos with matching fea-
tures, as in Fig. 1. These connectivity graphs suggest that

many of the uncontrolled datasets we tested our reconstruc-
tion algorithm on consist of several large clusters of photos
with a small number of connections spanning clusters, and a
sparse set of photos hanging off the main clusters. The large
clusters usually correspond to sets of photos from similar
viewpoints. For instance, the large cluster that dominates
the Mount Rushmore connectivity graph are all frontal-
view photos taken from the observation terrace or the trails
around it, and the two large clusters on the right side of
the Colosseum connectivity graph correspond to the inside
and the outside of the Colosseum. Sometimes clusters cor-
respond not to viewpoint but to different lighting conditions,
as in the case of the Trevi Fountain collection (see Fig. 1),
where there is a “daytime” cluster and a “nighttime” clus-
ter.

Int J Comput Vis

Fig. 9 Sample reconstructed scenes. From top to bottom: Notre
Dame, Mount Rushmore, Trafalgar Square, Yosemite, Trevi
Fountain, and Sphinx. The first column shows a sample im-
age, and the second column shows a view of the reconstruction.
The third and fourth columns show photo connectivity graphs, in

which each image in the set is a node and an edge links each
pair of images with feature matches. The third column shows
the photo connectivity graph for the full image set, and the
fourth for the subset of photos that were ultimately reconstructed

Int J Comput Vis

Fig. 10 More sample reconstructed scenes. From top to bottom: St. Basil’s, Colosseum, Annecy, Prague and Great Wall. The last three photo
collections were each taken by a single person

Inside of a cluster, the neato19 mass-spring system used
to embed the graph into the plane tends to pull together the
most similar photos and push apart the least similar ones.
This behavior can result in photos being laid out along intu-

19Graphviz—graph visualization software, http://www.graphviz.org/.

itive dimensions. For instance, in the large cluster at the top
of the connectivity graph for the Trevi Fountain dataset, as
well as the sparser cluster on the bottom, the x-axis roughly
corresponds to the angle from which the fountain is viewed.
The photos that span clusters tend to be those that happen
to see two parts of a scene (for instance, both the inside and

Int J Comput Vis

outside of a building), or those that are sharp, in focus, and
well-lit, in the case of clusters taken at different times of
day. The “leaf” nodes in the graph generally correspond to
images that are at extremes along some dimension, such as
photos that are very zoomed in, photos taken from a sig-
nificantly different viewpoint, or photos taken under very
different lighting.

While the graphs in the third column of Figs. 9 and 10
represent the connectivity of entire photo sets, the fourth
column shows the part of the graph our algorithm was able
to reconstruct (the reconstruction graph). As described in
Sect. 4, in general, our algorithm does not reconstruct all
input photos, because the input set may form separate con-
nected components, or clusters that are too weakly con-
nected to be reliable reconstructed (during reconstruction,
photos are added until no remaining photo observes enough
3D points to reliably add it to the scene). These reconstruc-
tion graphs suggest that for unstructured datasets, our recon-
struction algorithm tends to reconstruct most of one of the
main clusters, and can sometimes bridge gaps between clus-
ters with enough connections between them. For instance,
in the Sphinx collection, our algorithm reconstructed two
prominent clusters, one on the right side of the graph, and
one on the bottom. These clusters correspond to two sides
of the Sphinx (the front and the right side) which are com-
monly photographed; a few photos were taken from inter-
mediate angles, allowing the two clusters to be connected. In
the Colosseum collection, only the outside of the structure
was successfully reconstructed, and therefore only a single
cluster in the connectivity graph is represented in the recon-
struction graph. More images would be needed to bridge the
other clusters in the graph. In general, the more “connected”
the image graph is, the more images can successfully be reg-
istered.

For the controlled datasets (Annecy, Prague, and Great
Wall), the photos were captured with the intention of gen-
erating a reconstruction from them, and the connectivity
graphs are less clustered, as they were taken, for the most
part, while walking along a path. In the Prague photo set,
for instance, most of the photos were taken all around the
Old Town Square, looking outward at the buildings. A few
were taken looking across the square, so a few longer range
connections between parts of the graph are evident. Our re-
construction algorithm was able to register most of the pho-
tos in these datasets.

9 Research Challenges

A primary objective of this paper is to motivate more re-
search in the computer vision community on analyzing the
diverse and massive photo collections available on the In-
ternet. While this paper presented some initial steps towards

processing such imagery for the purpose of reconstruction
and visualization, huge challenges remain. Some of the open
research problems for our community include:

• Scale. As more and more of the world’s sites and cities
are captured photographically, we can imagine using SfM
methods to reconstruct a significant portion of the world’s
urban areas. Achieving such a goal will require Internet-
scale matching and reconstruction algorithms that oper-
ate on millions of images. Some recent matching algo-
rithms (Grauman and Darrell 2005; Nistér and Stewénius
2006) have demonstrated the ability to operate effectively
on datasets that approach this scale, although more work
is needed to improve the accuracy of these methods, es-
pecially on Internet photo collections. Furthermore, the
large redundancy in online photo collections means that
a small fraction of images may be sufficient to produce
high quality reconstructions. These and other factors lead
us to believe that Internet-scale SfM is feasible.

• Variability. While SIFT and other feature matching tech-
niques are surprisingly robust with respect to appearance
variation, more significant appearance changes still pose a
problem. More robust matching algorithms could enable a
number of exciting capabilities, such as matching ground-
based to aerial/satellite views, aligning images of natural
sites through changes in seasons and weather conditions,
registering historical photos and artistic renderings with
modern-day views (rephotography20), and robust match-
ing using low-quality (e.g., cell phone camera) devices
and imagery.

• Accuracy. Accuracy is an important concern for ap-
plications such as localization (e.g., figuring out where
you are by taking a photograph), navigation, and sur-
veillance. Most SfM methods operate by minimizing re-
projection error and do not provide guarantees on met-
ric accuracy. However, satellite images, maps, DEMs,
surveys, and similar data provide a rich source of met-
ric data for a large percentage of world sites; such data
could be used to obtain more accurate metric SfM re-
sults. There is also a need for evaluation studies, in the
spirit of (Scharstein and Szeliski 2002; Seitz et al. 2006;
Szeliski et al. 2006), that benchmark the best-of-breed
SfM algorithms against ground truth datasets and encour-
age the development of more accurate techniques.

• Shape. While SfM techniques provide only sparse geom-
etry, the ability to compute accurate camera parame-
ters opens the door for techniques such as multi-view
stereo that compute dense surface shape models. In turn,
shape enables computing scene reflectance properties
(e.g., BRDFs) and illumination. We therefore envision a
new breed of shape and reflectance modeling techniques

20Rephotography, http://en.wikipedia.org/wiki/Rephotography.

Int J Comput Vis

that operate robustly on the free-form imagery typical in
Internet photo collections (see Goesele et al. 2007 for ex-
citing initial steps along these lines).

• Online algorithms. Imagine pointing your cell phone
camera at a scene of interest, and have it instantly recog-
nize where you are and annotate the image in real time
with information about objects visible in the image. This
and a number of other applications become feasible only
with online algorithms that produce results in real time.
Similarly, one can imagine highlighting areas of the world
that are not sufficiently covered with photographs, and
provide a way for users to take photos of these areas, up-
load the results, and see the resulting refinement to the
model. (The Geograph British Isles project21 uses man-
ual geotagging to get at least one representative photo-
graph for each square kilometer of the British Isles.) This
is, in effect, a form of active vision (Aloimonos 1993;
Blake and Yuille 1993) but on a massive scale, where peo-
ple in the world population are the active agents filling in
the missing data.

In conclusion, we believe Internet imagery provides very
fertile ground for computer vision research. The massive
amount of data available on the Internet is starting to be used
to address several problems in computer graphics and com-
puter vision, including object category recognition, (Fergus
et al. 2005), scene completion (Hays and Efros 2007), and
object insertion (Lalonde et al. 2007). We expect to see ma-
jor advances in this area over the next few years.

Appendix 1: Structure from Motion Optimization

A perspective camera can be parameterized by an eleven-
parameter projection matrix. Making the common additional
assumptions that the pixels are square and that the center of
projection is coincident with the image center, the number
of parameters is reduced to seven: the 3D orientation (three
parameters), the camera center c (three parameters), and the
focal length f (one parameter). In our system, we also solve
for two radial distortion parameters, κ1 and κ2, so the total
number of parameters per camera is nine.

To parameterize the rotations, we use an incremental ro-
tation, ω, where

R(θ, n̂) = I + sin θ [n̂]× + (1 − cos θ)[n̂]2×, ω = θn̂

is the incremental rotation matrix applied to an initial rota-
tion, and

[n̂]× =
⎡
⎣ 0 −n̂z n̂y

n̂z 0 −n̂x

−n̂y n̂x 0

⎤
⎦ .

21Geograph British Isles project website, http://www.geograph.org.
uk/.

We group the nine parameters into a vector, Θ = [ω,c,f,

κ1, κ2]. Each point is parameterized by a 3D position, X.
Recovering the parameters can be formulated as an opti-

mization problem. In particular, we have a set of n cameras,
parameterized by Θi . We also have a set of m tracks, pa-
rameterized by Xj , and a set of 2D projections, qij , where
qij is the observed projection of the j -th track in the i-th
camera.

Let P(Θ,X) be the equation mapping a 3D point X to
its 2D projection in a camera with parameters Θ . P trans-
forms X to homogeneous image coordinates and performs
the perspective division, that applies radial distortion:

X′ = R(X − c),

P0 = [−f X′
x/X′

z −f X′
y/X′

z

]T
,

P = grd(P0)

where grd(p) is the distortion equation given in Sect. 4.2.
We wish to minimize the sum of the reprojection errors:

n∑
i=1

m∑
j=1

wij‖qij − P(Θi,Xj)‖

(wij is used as an indicator variable where wij = 1 if camera
i observes point j , and wij = 0 otherwise).

When initializing a new camera, we have one or two in-
dependent estimates of the focal length. One estimate, f1,
is 1

2 (K11 + K22), where K is the intrinsic matrix estimated
using DLT. The other, f2, is calculated from the EXIF tags
of an image, and is undefined if the necessary EXIF tags
are absent. This estimate is usually good, but can occasion-
ally be off by more than a factor of two. We prefer to use
f2 as initialization when it exists, but first we check that
0.7f1 < f2 < 1.4f1 to make sure f2 does not disagree to
much with the DLT estimate. If this test fails, we use f1.
Otherwise, we use f2, and add the term γ (f − f2)

2 to the
objective function, in order to keep the focal length of the
camera close to the initial estimate. We used γ = 0.001 for
each of our tests.

Appendix 2: Image Selection Criteria

When determining how well an image Ij represents a point
set S during an object selection, the score is computed as a
weighted sum of three terms, Evisible + αEangle + βEdetail

(we use α = 1
3 and β = 2

3).
To compute the visibility term Evisible, we first check

whether S ∩ Points(Cj) is empty. If so, the object is deemed
not to be visible to Cj at all, and Evisible = −∞. Otherwise,
Evisible = ninside|S| , where ninside denotes the number of points
in S that project inside the boundary of image Ij .

Int J Comput Vis

The term Eangle is used to favor head-on views of a set of
points over oblique views. To compute Eangle, we first fit a
plane to the points in S using a RANSAC procedure. If the
percentage of points in S which are inliers to the recovered
plane is above a threshold of 50% (i.e., there appears to be a
dominant plane in the selection), we favor cameras that view
the object head-on by setting Eangle = V (Cj) · n̂, where V

indicates viewing direction, and n̂ the normal to the recov-
ered plane. If fewer than 50% of the points fit the plane, we
set Eangle = 0.

Finally, Edetail favors high-resolution views of the object.
Edetail is defined to be the area, in pixels, of the bounding
box of the projections of S into image Ij (considering only
points that project inside the boundary of Ij). Edetail is nor-
malized by the area of the largest such bounding box, so the
highest resolution available view will have a score of 1.0.

Appendix 3: Photo Credits

We would like to thank the following people for allowing us
to reproduce their photographs:

Holly Ables, of Nashville, TN
Rakesh Agrawal
Pedro Alcocer
Julien Avarre (http://www.flickr.com/photos/eole/)
Rael Bennett (http://www.flickr.com/photos/spooky05/)
Loïc Bernard
Nicole Bratt
Nicholas Brown
Domenico Calojero (mikuzz@gmail.com)
DeGanta Choudhury (http://www.flickr.com/photos/

deganta/)
dan clegg
Claude Covo-Farchi
Alper Çuğun
W. Garth Davis
Stamatia Eliakis
Dawn Endico (endico@gmail.com)
Silvana M. Felix
Jeroen Hamers
Caroline Härdter
Mary Harrsch
Molly Hazelton
Bill Jennings (http://www.flickr.com/photos/mrjennings),

supported by grants from the National Endowment for
the Humanities and the Fund for Teachers

Michelle Joo
Tommy Keswick
Kirsten Gilbert Krenicky
Giampaolo Macorig
Erin K Malone (photographs copyright 2005)
Daryoush Mansouri

Paul Meidinger
Laurete de Albuquerque Mouazan
Callie Neylan
Robert Norman
Dirk Olbertz
Dave Ortman
George Owens
Claire Elizabeth Poulin
David R. Preston
Jim Sellers and Laura Kluver
Peter Snowling
Rom Srinivasan
Jeff Allen Wallen Photographer/Photography
Daniel West
Todd A. Van Zandt
Dario Zappalà
Susan Elnadi

We also acknowledge the following people whose pho-
tographs we reproduced under Creative Commons licenses:

Shoshanah
http://www.flickr.com/photos/shoshanah22

Dan Kamminga
http://www.flickr.com/photos/dankamminga1

Tjeerd Wiersma http://www.flickr.com/photos/tjeerd1

Manogamo
http://www.flickr.com/photos/se-a-vida-e23

Ted Wang http://www.flickr.com/photos/mtwang24

Arnet http://www.flickr.com/photos/gurvan3

Rebekah Martin http://www.flickr.com/photos/rebekah3

Jean Ruaud http://www.flickr.com/photos/jrparis3

Imran Ali http://www.flickr.com/photos/imran3

Scott Goldblatt http://www.flickr.com/photos/goldblatt3

Todd Martin http://www.flickr.com/photos/tmartin25

Steven http://www.flickr.com/photos/graye4

ceriess http://www.flickr.com/photos/ceriess1

Cory Piña http://www.flickr.com/photos/corypina3

mark gallagher
http://www.flickr.com/photos/markgallagher1

Celia http://www.flickr.com/photos/100n30th3

Carlo B. http://www.flickr.com/photos/brodo3

Kurt Naks http://www.flickr.com/photos/kurtnaks4

Anthony M. http://www.flickr.com/photos/antmoose1

Virginia G http://www.flickr.com/photos/vgasull3

Collection credit and copyright notice for Moon and Half
Dome, 1960, by Ansel Adams: Collection Center for Cre-

1http://creativecommons.org/licenses/by/2.0/.
2http://creativecommons.org/licenses/by-nd/2.0/.
3http://creativecommons.org/licenses/by-nc-nd/2.0/.
4http://creativecommons.org/licenses/by-nc/2.0/.

Int J Comput Vis

ative Photography, University of Arizona, © Trustees of The
Ansel Adams Publishing Rights Trust.

References

Akbarzadeh, A., Frahm, J.-M., Mordohai, P., Clipp, B., Engels, C.,
Gallup, D., Merrell, P., Phelps, M., Sinha, S., Talton, B., Wang,
L., Yang, Q., Stewenius, H., Yang, R., Welch, G., Towles, H.,
Nistér, D., & Pollefeys, M. (2006). Towards urban 3D reconstruc-
tion from video. In Proceedings of the international symposium
on 3D data processing, visualization, and transmission.

Aliaga, D. G. et al. (2003). Sea of images. IEEE Computer Graphics
and Applications, 23(6), 22–30.

Aliaga, D., Yanovsky, D., Funkhouser, T., & Carlbom, I. (2003). Inter-
active image-based rendering using feature globalization. In Pro-
ceedings of the SIGGRAPH symposium on interactive 3D graph-
ics (pp. 163–170).

Aloimonos, Y. (Ed.). (1993). Active perception. Mahwah: Lawrence
Erlbaum Associates.

Arya, S., Mount, D. M., Netanyahu, N. S., Silverman, R., & Wu, A. Y.
(1998). An optimal algorithm for approximate nearest neighbor
searching fixed dimensions. Journal of the ACM, 45(6), 891–923.

Baumberg, A. (2000). Reliable feature matching across widely sepa-
rated views. In Proceedings of the IEEE conference on computer
vision and pattern recognition (Vol. 1, pp. 774–781), June 2000.

Blake, A., & Yuille, A. (Eds.). (1993). Active vision. Cambridge: MIT
Press.

Brown, M., & Lowe, D. G. (2005). Unsupervised 3D object recogni-
tion and reconstruction in unordered datasets. In Proceedings of
the international conference on 3D digital imaging and modelling
(pp. 56–63).

Buehler, C., Bosse, M., McMillan, L., Gortler, S., & Cohen, M.
(2001). Unstructured lumigraph rendering. In SIGGRAPH con-
ference proceedings (pp. 425–432).

Chen, S., & Williams, L. (1993). View interpolation for image synthe-
sis. In SIGGRAPH conference proceedings (pp. 279–288).

Chew, L. P. (1987). Constrained Delaunay triangulations. In Proceed-
ings of the symposium on computational geometry (pp. 215–222).

Cooper, M., Foote, J., Girgensohn, A., & Wilcox, L. (2003). Temporal
event clustering for digital photo collections. In Proceedings of
the ACM international conference on multimedia (pp. 364–373).

Debevec, P. E., Taylor, C. J., & Malik, J. (1996). Modeling and render-
ing architecture from photographs: a hybrid geometry- and image-
based approach. In SIGGRAPH conference proceedings (pp. 11–
20).

Dick, A. R., Torr, P. H. S., & Cipolla, R. (2004). Modelling and inter-
pretation of architecture from several images. International Jour-
nal of Computer Vision, 60(2), 111–134.

Feiner, S., MacIntyre, B., Hollerer, T., & Webster, A. (1997). A tour-
ing machine: Prototyping 3D mobile augmented reality systems
for exploring the urban environment. In Proceedings of the IEEE
international symposium on wearable computers (pp. 74–81).

Fergus, R., Fei-Fei, L., Perona, P., & Zisserman, A. (2005). Learning
object categories from Google’s image search. In Proceedings of
the international conference on computer vision (Vol. 2, pp. 816–
823), October 2005.

Fischler, M. A., & Bolles, R. C. (1981). Random sample consensus:
A paradigm for model fitting with applications to image analysis
and automated cartography. Communications of the ACM, 24(6),
381–395.

Fitzgibbon, A. W., & Zisserman, A. Automatic camera recovery for
closed and open image sequences. In Proceedings of the European
conference on computer vision (pp. 311–326), June 1998.

Förstner, W. (1986). A feature-based correspondence algorithm for im-
age matching. International Archives Photogrammetry & Remote
Sensing, 26(3), 150–166.

Goesele, M., Snavely, N., Seitz, S. M., Curless, B., & Hoppe, H. (2007,
to appear). Multi-view stereo for community photo collections. In
Proceedings of the international conference on computer vision.

Gortler, S. J., Grzeszczuk, R., Szeliski, R., & Cohen, M. F. (1996). The
lumigraph. In SIGGRAPH conference proceedings (pp. 43–54),
August 1996.

Grauman, K., & Darrell, T. (2005). The pyramid match kernel: discrim-
inative classification with sets of image features. In Proceedings
of the international conference on computer vision (pp. 1458–
1465).

Grzeszczuk, R. (2002). Course 44: image-based modeling. In SIG-
GRAPH 2002

Hannah, M. J. (1988). Test results from SRI’s stereo system. In Image
understanding workshop (pp. 740–744), Cambridge, MA, April
1988. Los Altos: Morgan Kaufmann.

Harris, C., & Stephens, M. J. (1988). A combined corner and edge
detector. In Alvey vision conference (pp. 147–152).

Hartley, R. I. (1997). In defense of the eight-point algorithm. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
19(6), 580–593.

Hartley, R. I., & Zisserman, A. (2004). Multiple view geometry. Cam-
bridge: Cambridge University Press.

Hays, J., & Efros, A. A. (2007). Scene completion using millions of
photographs. In SIGGRAPH conference proceedings.

Irani, M., & Anandan, P. (1998). Video indexing based on mosaic rep-
resentation. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 86(5), 905–921.

Johansson, B., & Cipolla, R. (2002). A system for automatic pose-
estimation from a single image in a city scene. In Proceedings of
the IASTED international conference on signal processing, pat-
tern recognition and applications.

Kadir, T., & Brady, M. (2001). Saliency, scale and image description.
International Journal of Computer Vision, 45(2), 83–105.

Kadobayashi, R., & Tanaka, K. (2005). 3D viewpoint-based photo
search and information browsing. In Proceedings of the ACM in-
ternational conference on research and development in informa-
tion retrieval (pp. 621–622).

Lalonde, J.-F., Hoiem, D., Efros, A. A., Rother, C., Winn, J., & Cri-
minisi, A. (2007). Photo clip art. In SIGGRAPH conference pro-
ceedings.

Levoy, M., & Hanrahan, P. (1996). Light field rendering. In SIG-
GRAPH conference proceedings (pp. 31–42).

Lippman, A. (1980). Movie maps: an application of the optical
videodisc to computer graphics. In SIGGRAPH conference pro-
ceedings (pp. 32–43).

Longuet-Higgins, H. C. (1981). A computer algorithm for reconstruct-
ing a scene from two projections. Nature, 293, 133–135.

Lourakis, M., & Argyros, A. (2004). The design and implementation
of a generic sparse bundle adjustment software package based on
the Levenberg–Marquardt algorithm (Technical Report 340). Inst.
of Computer Science-FORTH, Heraklion, Crete, Greece. Avail-
able from www.ics.forth.gr/~lourakis/sba.

Lowe, D. (2004). Distinctive image features from scale-invariant key-
points. International Journal of Computer Vision, 60(2), 91–110.

Lucas, B. D., & Kanade, T. (1981). An iterative image registration tech-
nique with an application in stereo vision. In International joint
conference on artificial Intelligence (pp. 674–679).

Matas, J. et al. (2004). Robust wide baseline stereo from maximally
stable extremal regions. Image and Vision Computing, 22(10),
761–767.

McCurdy, N., & Griswold, W. (2005). A systems architecture for ubiq-
uitous video. In Proceedings of the international conference on
mobile systems, applications, and services (pp. 1–14).

Int J Comput Vis

McMillan, L., & Bishop, G. (1995) Plenoptic modeling: An image-
based rendering system. In SIGGRAPH conference proceedings
(pp. 39–46).

Mikolajczyk, K., & Schmid, C. (2004). Scale & affine invariant interest
point detectors. International Journal of Computer Vision, 60(1),
63–86.

Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J.,
Schaffalitzky, F., Kadir, T., & van Gool, L. (2005). A compari-
son of affine region detectors. International Journal of Computer
Vision, 65(1/2), 43–72.

Moravec, H. (1983). The Stanford cart and the CMU rover. Proceed-
ings of the IEEE, 71(7), 872–884.

Naaman, M., Paepcke, A., & Garcia-Molina, H. (2003). From where
to what: Metadata sharing for digital photographs with geographic
coordinates. In Proceedings of the international conference on co-
operative information systems (pp. 196–217).

Naaman, M., Song, Y. J., Paepcke, A., & Garcia-Molina, H. (2004).
Automatic organization for digital photographs with geographic
coordinates. In Proceedings of the ACM/IEEE-CS joint confer-
ence on digital libraries (pp. 53–62).

Nistér, D. (2000). Reconstruction from uncalibrated sequences with
a hierarchy of trifocal tensors. In Proceedings of the European
conference on computer vision (pp. 649–663).

Nistér, D. (2004). An efficient solution to the five-point relative pose
problem. IEEE Transactions on Pattern Analysis and Machine In-
telligence, 26(6), 756–777.

Nistér, D., & Stewénius, H. (2006). Scalable recognition with a vocab-
ulary tree. In Proceedings of the IEEE conference on computer
vision and pattern recognition (pp. 2118–2125).

Nocedal, J., & Wright, S. J. (1999). Springer series in operations re-
search. Numerical optimization. New York: Springer.

Oliensis, J. (1999). A multi-frame structure-from-motion algorithm un-
der perspective projection. International Journal of Computer Vi-
sion, 34(2–3), 163–192.

Pollefeys, M., Koch, R., & Van Gool, L. (1999). Self-calibration and
metric reconstruction in spite of varying and unknown internal
camera parameters. International Journal of Computer Vision,
32(1), 7–25.

Pollefeys, M., & Van Gool, L. (2002). From images to 3D models.
Communications of the ACM, 45(7), 50–55.

Pollefeys, M., van Gool, L., Vergauwen, M., Verbiest, F., Cornelis, K.,
Tops, J., & Koch, R. (2004). Visual modeling with a hand-held
camera. International Journal of Computer Vision, 59(3), 207–
232.

Robertson, D. P., & Cipolla, R. (2002). Building architectural models
from many views using map constraints. In Proceedings of the
European conference on computer vision (Vol. II, pp. 155–169).

Rodden, K., & Wood, K. R. (2003). How do people manage their digi-
tal photographs? In Proceedings of the conference on human fac-
tors in computing systems (pp. 409–416).

Román, A., et al. (2004). Interactive design of multi-perspective im-
ages for visualizing urban landscapes. In IEEE visualization 2004
(pp. 537–544).

Russell, B. C., Torralba, A., Murphy, K. P., & Freeman, W. T. (2005).
Labelme: a database and web-based tool for image annotation
(Technical Report MIT-CSAIL-TR-2005-056). Massachusetts In-
stitute of Technology.

Schaffalitzky, F., & Zisserman, A. (2002). Multi-view matching for un-
ordered image sets, or “How do I organize my holiday snaps?”
In Proceedings of the European conference on computer vision
(Vol. 1, pp. 414–431).

Scharstein, D., & Szeliski, R. (2002). A taxonomy and evaluation of
dense two-frame stereo correspondence algorithms. International
Journal of Computer Vision, 47(1), 7–42.

Schindler, G., Dellaert, F., & Kang, S. B. (2007). Inferring temporal
order of images from 3D structure. In Proceedings of the IEEE
conference on computer vision and pattern recognition.

Schmid, C., & Zisserman, A. (1997). Automatic line matching across
views. In Proceedings of the IEEE conference on computer vision
and pattern recognition (pp. 666–671).

Seitz, S. M., & Dyer, C. M. (1996). View morphing. In SIGGRAPH
conference proceedings (pp. 21–30).

Seitz, S., Curless, B., Diebel, J., Scharstein, D., & Szeliski, R. (2006).
A comparison and evaluation of multi-view stereo reconstruction
algorithms. In Proceedings of the IEEE conference on computer
vision and pattern recognition (Vol. 1, pp. 519–526), June 2006.

Shi, J., & Tomasi, C. Good features to track. In Proceedings of the
IEEE conference on computer vision and pattern recognition
(pp. 593–600), June 1994.

Sivic, J., & Zisserman, A. (2003). Video Google: a text retrieval ap-
proach to object matching in videos. In Proceedings of the inter-
national conference on computer vision (pp. 1470–1477), October
2003.

Snavely, N., Seitz, S. M., & Szeliski, R. (2006). Photo tourism: ex-
ploring photo collections in 3D. ACM Transactions on Graphics,
25(3), 835–846.

Spetsakis, M. E., & Aloimonos, J. Y. (1991). A multiframe approach
to visual motion perception. International Journal of Computer
Vision, 6(3), 245–255.

Strecha, C., Tuytelaars, T., & Van Gool, L. (2003). Dense matching of
multiple wide-baseline views. In Proceedings of the international
conference on computer vision (pp. 1194–1201), October 2003.

Szeliski, R. (2006). Image alignment and stitching: a tutorial. Foun-
dations and Trends in Computer Graphics and Computer Vision,
2(1).

Szeliski, R., & Kang, S. B. (1994). Recovering 3D shape and motion
from image streams using nonlinear least squares. Journal of Vi-
sual Communication and Image Representation, 5(1), 10–28.

Szeliski, R., Zabih, R., Scharstein, D., Veksler, O., Kolmogorov, V.,
Agarwala, A., Tappen, M., & Rother, C. (2006). A comparative
study of energy minimization methods for Markov random fields.
In Proceedings of the European conference on computer vision
(Vol. 2, pp. 16–29), May 2006.

Tanaka, H., Arikawa, M., & Shibasaki, R. (2002). A 3-d photo collage
system for spatial navigations. In Revised papers from the second
Kyoto workshop on digital cities II, computational and sociologi-
cal approaches (pp. 305–316).

Teller, S., Antone, M., Bodnar, Z., Bosse, M., Coorg, S., Jethwa, M., &
Master, N. (2003). Calibrated, registered images of an extended
urban area. International Journal of Computer Vision, 53(1), 93–
107.

Tomasi, C., & Kanade, T. (1992). Shape and motion from image
streams under orthography: a factorization method. International
Journal of Computer Vision, 9(2), 137–154.

Toyama, K., Logan, R., & Roseway, A. (2003). Geographic location
tags on digital images. In Proceedings of the international confer-
ence on multimedia (pp. 156–166).

Triggs, B., et al. (1999). Bundle adjustment—a modern synthesis. In
International workshop on vision algorithms (pp. 298–372), Sep-
tember 1999.

Tuytelaars, T., & Van Gool, L. (2004). Matching widely separated
views based on affine invariant regions. International Journal of
Computer Vision, 59(1), 61–85.

Vergauwen, M., & Van Gool, L. (2006). Web-based 3D reconstruction
service. Machine Vision and Applications, 17(2), 321–329.

von Ahn, L., & Dabbish, L. (2004). Labeling images with a computer
game. In Proceedings of the conference on human factors in com-
puting systems (pp. 319–326).

Zitnick, L., Kang, S. B., Uyttendaele, M., Winder, S., & Szeliski,
R. (2004). High-quality video view interpolation using a layered
representation. In SIGGRAPH conference proceedings (pp. 600–
608).

	Modeling the World from Internet Photo Collections
	Abstract
	Introduction
	Previous Work
	Feature Correspondence
	Structure from Motion
	Image-Based Modeling
	Image-Based Rendering
	Image Browsing, Retrieval, and Annotation

	Overview
	Reconstructing Cameras and Sparse Geometry
	Keypoint Detection and Matching
	Structure from Motion
	Geo-Registration
	Aligning to Digital Elevation Maps

	Scene Representation

	Photo Explorer Rendering
	User Interface Layout
	Rendering the Scene
	Transitions between Photographs
	Camera Motion
	View Interpolation
	Triangulated Morphs
	Planar Morphs

	Photo Explorer Navigation
	Free-Flight Navigation
	Moving Between Related Views
	Object-Based Navigation
	Creating Stabilized Slideshows
	Photosynth

	Enhancing Scenes
	Registering New Photographs
	Annotating Objects

	Results
	Discussion

	Research Challenges
	Appendix 1: Structure from Motion Optimization
	Appendix 2: Image Selection Criteria
	Appendix 3: Photo Credits
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

