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Figure 1: Our system takes unstructured collections of photographs such as those from online image searches (a) and reconstructs 3D points
and viewpoints (b) to enable novel ways of browsing the photos (c).

Abstract
We present a system for interactively browsing and exploring large
unstructured collections of photographs of a scene using a novel
3D interface. Our system consists of an image-based modeling
front end that automatically computes the viewpoint of each photo-
graph as well as a sparse 3D model of the scene and image to model
correspondences. Our photo explorer uses image-based rendering
techniques to smoothly transition between photographs, while also
enabling full 3D navigation and exploration of the set of images and
world geometry, along with auxiliary information such as overhead
maps. Our system also makes it easy to construct photo tours of
scenic or historic locations, and to annotate image details, which
are automatically transferred to other relevant images. We demon-
strate our system on several large personal photo collections as well
as images gathered from Internet photo sharing sites.
CR Categories: H.5.1 [Information Interfaces and Presentation]:
Multimedia Information Systems—Artificial, augmented, and vir-
tual realities I.2.10 [Artificial Intelligence]: Vision and Scene
Understanding—Modeling and recovery of physical attributes
Keywords: image-based rendering, image-based modeling, photo
browsing, structure from motion

1 Introduction
A central goal of image-based rendering is to evoke a visceral sense
of presence based on a collection of photographs of a scene. The
last several years have seen significant progress towards this goal
through view synthesis methods in the research community and in
commercial products such as panorama tools. One of the dreams

is that these approaches will one day allow virtual tourism of the
world’s interesting and important sites.

During this same time, digital photography, together with the In-
ternet, have combined to enable sharing of photographs on a truly
massive scale. For example, a Google image search on “Notre
Dame Cathedral” returns over 15,000 photos, capturing the scene
from myriad viewpoints, levels of detail, lighting conditions, sea-
sons, decades, and so forth. Unfortunately, the proliferation of
shared photographs has outpaced the technology for browsing such
collections, as tools like Google (www.google.com) and Flickr
(www.flickr.com) return pages and pages of thumbnails that the
user must comb through.

In this paper, we present a system for browsing and organizing
large photo collections of popular sites which exploits the common
3D geometry of the underlying scene. Our approach is based on
computing, from the images themselves, the photographers’ loca-
tions and orientations, along with a sparse 3D geometric represen-
tation of the scene, using a state-of-the-art image-based modeling
system. Our system handles large collections of unorganized pho-
tographs taken by different cameras in widely different conditions.
We show how the inferred camera and scene information enables
the following capabilities:

• Scene visualization. Fly around popular world sites in 3D by
morphing between photos.

• Object-based photo browsing. Show me more images that
contain this object or part of the scene.

• Where was I? Tell me where I was when I took this picture.
• What am I looking at? Tell me about objects visible in this

image by transferring annotations from similar images.

Our paper presents new image-based modeling, image-based
rendering, and user-interface techniques for accomplishing these
goals, and their composition into an end-to-end 3D photo brows-
ing system. The resulting system is remarkably robust in practice;
we include results on numerous sites, ranging from Notre Dame
(Figure 1) to the Great Wall of China and Yosemite National Park,
as evidence of its broad applicability.

The remainder of this paper is structured as follows. Section 2
gives an overview of the approach. Section 3 surveys related work



in vision, graphics, and image browsing. Section 4 presents our
approach to obtain geo-registered camera and scene information.
Our photo exploration interface and rendering techniques are de-
scribed in Section 5, our navigation tools in Section 6, and anno-
tation transfer capabilities in Section 7. Section 8 presents results.
We conclude with a discussion of limitations and future work in
Section 9.

2 System Overview
In this section, we provide an overview and motivation for the spe-
cific features of our system. For visual demonstrations of these
features, we refer the reader to the companion video.

Our work is based on the idea of using camera pose (location,
orientation, and field of view) and sparse 3D scene information to
create new interfaces for browsing large collections of photographs.
Knowing the camera pose enables placing the images into a com-
mon 3D coordinate system (Figure 1 (b)) and allows the user to
virtually explore the scene by moving in 3D space from one image
to another using our photo explorer. We use morphing techniques
to provide smooth transitions between photos. In addition, the re-
constructed features provide a sparse but effective 3D visualization
of the scene that serves as a backdrop for the photographs them-
selves. Beyond displaying these features as a simple point cloud,
we present a novel non-photorealistic rendering technique that pro-
vides a better sense of scene appearance.

While standard 3D navigation controls are useful for some in-
teractions, they are not ideal for other tasks. For example, suppose
you want to see images of a particular object or region in the scene.
To support this kind of object-based browsing, we allow the user
to draw a box around an object of interest in one image; the system
then moves smoothly to the “best” view of that object. We also pro-
vide the ability to geometrically stabilize a set of views of the same
object, to more effectively compare scene appearance over different
times of day, seasons, or weather conditions.

Often, we are interested in learning more about the content of
an image, e.g., “which statue is this?” or “when was this building
constructed?” A great deal of annotated image content of this form
already exists in guidebooks, maps, and Internet resources such as
Wikipedia (www.wikipedia.org) and Flickr. However, the image
you may be viewing at any particular time (e.g., from your cell
phone camera) may not have such annotations. A key feature of our
system is the ability to transfer annotations automatically between
images, so that information about an object in one image is linked
to all other images that contain the same object.

The backbone of our system is a robust structure from motion
approach for reconstructing the required 3D information. Our ap-
proach first computes feature correspondences between images, us-
ing descriptors that are robust with respect to variations in pose,
scale, and lighting, and runs an optimization to recover the camera
parameters and 3D positions of those features. The resulting corre-
spondences and 3D data enable all of the aforementioned features
of our system.

3 Related work
There are three main categories of work related to ours: image-
based modeling; image-based rendering; and image browsing, re-
trieval, and annotation.

3.1 Image-based modeling
Image-based modeling (IBM) is the process of creating three-
dimensional models from a collection of input images [Debevec

et al. 1996; Grzeszczuk 2002; Pollefeys et al. 2004]. Our image-
based modeling system is based on recent work in structure from
motion (SfM), which aims to recover camera parameters, pose esti-
mates, and sparse 3D scene geometry from image sequences [Hart-
ley and Zisserman 2004]. In particular, our SfM approach is sim-
ilar to that of Brown and Lowe [2005], with several modifications
to improve robustness over a variety of data sets. These include
initializing new cameras using pose estimation, to help avoid local
minima; a different heuristic for selecting the initial two images for
SfM; checking that reconstructed points are well-conditioned be-
fore adding them to the scene; and using focal length information
from image EXIF tags. Schaffalitzky and Zisserman [2002] present
another related technique for calibrating unordered image sets, con-
centrating on efficiently matching interest points between images.
While both of these approaches address the same SfM problem that
we do, they were tested on much simpler datasets with more limited
variation in imaging conditions. Our paper marks the first success-
ful demonstration of SfM techniques being applied to the kinds of
real-world image sets found on Google and Flickr. For instance,
our typical image set has photos from hundreds of different cam-
eras, zoom levels, resolutions, different times of day or seasons,
illumination, weather, and differing amounts of occlusion.

One particular application of IBM has been the creation of large
scale architectural models. Notable examples include the semi-
automatic Façade system [Debevec et al. 1996], which was used
to reconstruct compelling fly-throughs of the UC Berkeley cam-
pus; automatic architecture reconstruction systems such as that of
Dick, et al.[2004]; and the MIT City Scanning Project [Teller et al.
2003], which captured thousands of calibrated images from an in-
strumented rig to compute a 3D model of the MIT campus. There
are also several ongoing academic and commercial projects fo-
cused on large-scale urban scene reconstruction. These efforts in-
clude the 4D Cities project (www.cc.gatech.edu/4d-cities), which
aims to create a spatial-temporal model of Atlanta from histor-
ical photographs; the Stanford CityBlock Project [Román et al.
2004], which uses video of city blocks to create multi-perspective
strip images; and the UrbanScape project of Pollefeys and Nistér
(www.cs.unc.edu/Research/urbanscape/).

3.2 Image-based rendering
The field of image-based rendering (IBR) is devoted to the prob-
lem of synthesizing new views of a scene from a set of input pho-
tographs. A forerunner to this field was the groundbreaking Aspen
MovieMap project [Lippman 1980], in which thousands of images
of Aspen Colorado were captured from a moving car, registered to
a street map of the city, and stored on laserdisc. A user interface en-
abled interactively moving through the images as a function of the
desired path of the user. Additional features included a navigation
map of the city overlayed on the image display, and the ability to
touch any building in the current field of view and jump to a facade
of that building. The system also allowed attaching metadata such
as restaurant menus and historical images with individual buildings.
Our work can be seen as a way to automatically create MovieMaps
from unorganized collections of images. (In contrast, the Aspen
MovieMap involved a team of over a dozen people working over
a few years.) A number of our visualization, navigation, and an-
notation capabilities are similar to those in the original MovieMap
work, but in an improved and generalized form.

More recent work in IBR has focused on techniques for new view
synthesis, e.g., [Chen and Williams 1993; McMillan and Bishop
1995; Gortler et al. 1996; Levoy and Hanrahan 1996; Seitz and
Dyer 1996; Aliaga et al. 2003a; Zitnick et al. 2004; Buehler et al.
2001]. In terms of applications, Aliaga et al.’s [2003a] Sea of Im-
ages work is perhaps closest to ours in its use of a large collection
of images taken throughout an architectural space; the same authors



address the problem of computing consistent feature matches across
multiple images for the purposes of IBR [Aliaga et al. 2003b].
However, our images are casually acquired by different photogra-
phers, rather than being taken on a fixed grid with a guided robot.

In contrast to most prior work in IBR, our objective is not to
synthesize a photo-realistic view of the world from all viewpoints
per se, but to browse a specific collection of photographs in a 3D
spatial context that gives a sense of the geometry of the underlying
scene. Our approach therefore uses an approximate plane-based
view interpolation method and a non-photorealistic rendering of
background scene structures. As such, we side-step the more chal-
lenging problems of reconstructing full surface models [Debevec
et al. 1996; Teller et al. 2003], light fields [Gortler et al. 1996;
Levoy and Hanrahan 1996], or pixel-accurate view interpolations
[Chen and Williams 1993; McMillan and Bishop 1995; Seitz and
Dyer 1996; Zitnick et al. 2004]. The benefit of doing this is that we
are able to operate robustly with input imagery that is beyond the
scope of previous IBM and IBR techniques.

3.3 Image browsing, retrieval, and annotation
There are many techniques and commercial products for browsing
sets of photos and much research on the subject of how people tend
to organize photos, e.g., [Rodden and Wood 2003]. Many of these
techniques use metadata, such as keywords, photographer, or time,
as a basis of photo organization [Cooper et al. 2003].

There has been growing interest in using geo-location informa-
tion to facilitate photo browsing. In particular, the World-Wide
Media Exchange [Toyama et al. 2003] arranges images on an in-
teractive 2D map. PhotoCompas [Naaman et al. 2004] clusters im-
ages based on time and location. Realityflythrough [McCurdy and
Griswold 2005] uses interface ideas similar to ours for exploring
video from camcorders instrumented with GPS and tilt sensors, and
Kadobayashi and Tanaka [2005] present an interface for retrieving
images using proximity to a virtual camera. In these systems, lo-
cation is obtained from GPS or is manually specified. Because our
approach does not require GPS or other instrumentation, it has the
advantage of being applicable to existing image databases and pho-
tographs from the Internet. Furthermore, many of the navigation
features of our approach exploit the computation of image feature
correspondences and sparse 3D geometry, and therefore go beyond
what was possible in these previous location-based systems.

Many techniques also exist for the related task of retrieving im-
ages from a database. One particular system related to our work is
Video Google [Sivic and Zisserman 2003] (not to be confused with
Google’s own video search), which allows a user to select a query
object in one frame of video and efficiently find that object in other
frames. Our object-based navigation mode uses a similar idea, but
extended to the 3D domain.

A number of researchers have studied techniques for automatic
and semi-automatic image annotation, and annotation transfer in
particular. The LOCALE system [Naaman et al. 2003] uses prox-
imity to transfer labels between geo-referenced photographs. An
advantage of the annotation capabilities of our system is that our
feature correspondences enable transfer at much finer granularity;
we can transfer annotations of specific objects and regions between
images, taking into account occlusions and the motions of these ob-
jects under changes in viewpoint. This goal is similar to that of aug-
mented reality (AR) approaches (e.g., [Feiner et al. 1997]), which
also seek to annotate images. While most AR methods register a
3D computer-generated model to an image, we instead transfer 2D
image annotations to other images. Generating annotation content
is therefore much easier. (We can, in fact, import existing anno-
tations from popular services like Flickr.) Annotation transfer has
been also explored for video sequences [Irani and Anandan 1998].

Finally, Johansson and Cipolla [2002] have developed a system

where a user can take a photograph, upload it to a server where it is
compared to an image database, and receive location information.
Our system also supports this application in addition to many other
capabilities (visualization, navigation, annotation, etc.).

4 Reconstructing Cameras and Sparse
Geometry

Our system requires accurate information about the relative loca-
tion, orientation, and intrinsic parameters such as focal length for
each photograph in a collection, as well as sparse 3D scene geom-
etry. Some features of our system require the absolute locations of
the cameras, in a geo-referenced coordinate frame. Some of this
information can be provided with GPS devices and electronic com-
passes, but the vast majority of existing photographs lack such in-
formation. Many digital cameras embed focal length and other in-
formation in the EXIF tags of image files. These values are useful
for initialization, but are sometimes inaccurate.

In our system, we do not rely on the camera or any other piece
of equipment to provide us with location, orientation, or geometry.
Instead, we compute this information from the images themselves
using computer vision techniques. We first detect feature points in
each image, then match feature points between pairs of images, and
finally run an iterative, robust SfM procedure to recover the cam-
era parameters. Because SfM only estimates the relative position
of each camera, and we are also interested in absolute coordinates
(e.g., latitude and longitude), we use an interactive technique to reg-
ister the recovered cameras to an overhead map. Each of these steps
is described in the following subsections.

4.1 Keypoint detection and matching
The first step is to find feature points in each image. We use the
SIFT keypoint detector [Lowe 2004], because of its invariance to
image transformations. A typical image contains several thousand
SIFT keypoints. Other feature detectors could also potentially be
used; several detectors are compared in the work of Mikolajczyk,
et al.[2005]. In addition to the keypoint locations themselves, SIFT
provides a local descriptor for each keypoint. Next, for each pair of
images, we match keypoint descriptors between the pair, using the
approximate nearest neighbors package of Arya, et al.[1998], then
robustly estimate a fundamental matrix for the pair using RANSAC
[Fischler and Bolles 1987]. During each RANSAC iteration, we
compute a candidate fundamental matrix using the eight-point al-
gorithm [Hartley and Zisserman 2004], followed by non-linear re-
finement. Finally, we remove matches that are outliers to the recov-
ered fundamental matrix. If the number of remaining matches is
less than twenty, we remove all of the matches from consideration.

After finding a set of geometrically consistent matches between
each image pair, we organize the matches into tracks, where a track
is a connected set of matching keypoints across multiple images.
If a track contains more than one keypoint in the same image, it is
deemed inconsistent. We keep consistent tracks containing at least
two keypoints for the next phase of the reconstruction procedure.

4.2 Structure from motion
Next, we recover a set of camera parameters and a 3D location for
each track. The recovered parameters should be consistent, in that
the reprojection error, i.e., the sum of distances between the pro-
jections of each track and its corresponding image features, is min-
imized. This minimization problem is formulated as a non-linear
least squares problem (see Appendix A) and solved with algorithms
such as Levenberg-Marquardt [Nocedal and Wright 1999]. Such al-
gorithms are only guaranteed to find local minima, and large-scale



Figure 2: Camera and 3D point reconstructions from photos on the
Internet. From top to bottom: the Trevi Fountain, Half Dome, and
Trafalgar Square.

SfM problems are particularly prone to getting stuck in bad local
minima, so it is important to provide good initial estimates of the
parameters. Rather than estimating the parameters for all cameras
and tracks at once, we take an incremental approach, adding in one
camera at a time.

We begin by estimating the parameters of a single pair of cam-
eras. This initial pair should have a large number of matches, but
also have a large baseline, so that the 3D locations of the observed
points are well-conditioned. We therefore choose the pair of images
that has the largest number of matches, subject to the condition that
those matches cannot be well-modeled by a single homography, to
avoid degenerate cases.

Next, we add another camera to the optimization. We select the
camera that observes the largest number of tracks whose 3D loca-
tions have already been estimated, and initialize the new camera’s
extrinsic parameters using the direct linear transform (DLT) tech-
nique [Hartley and Zisserman 2004] inside a RANSAC procedure.
The DLT also gives an estimate of the intrinsic parameter matrix

Figure 3: Estimated camera locations for the Great Wall data set.

K as a general upper-triangular matrix. We use K and the focal
length estimated from the EXIF tags of the image to initialize the
focal length of the new camera (see Appendix A for more details).

Finally, we add tracks observed by the new camera into the
optimization. A track is added if it is observed by at least one
other recovered camera, and if triangulating the track gives a well-
conditioned estimate of its location. This procedure is repeated,
one camera at a time, until no remaining camera observes any re-
constructed 3D point. To minimize the objective function at every
iteration, we use the sparse bundle adjustment library of Lourakis
and Argyros [2004]. After reconstructing a scene, we optionally
run a post-processing step to detect 3D line segments in the scene
using a line segment reconstruction technique, as in the work of
Schmid and Zisserman [1997].

For increased robustness and speed, we make a few modifica-
tions to the basic procedure outlined above. First, after every run of
the optimization, we detect outlier tracks that contain at least one
keypoint with a high reprojection error, and remove these tracks
from the optimization. We then rerun the optimization, rejecting
outliers after each run, until no more outliers are detected. Second,
rather than adding a single camera at a time into the optimization,
we add multiple cameras. We first find the camera with the greatest
number of matches, M , to existing 3D points, then add any camera
with at least 0.75M matches to existing 3D points.

Figures 2 and 3 show reconstructed cameras (rendered as frusta)
and 3D feature points for several famous world sites reconstructed
with this method.

The total running time of the SfM procedure for the datasets
we experimented with ranged from a few hours (for Great Wall,
120 photos processed and matched, and 82 ultimately registered)
to about two weeks (for Notre Dame, 2,635 photos processed and
matched, and 597 photos registered). The running time is domi-
nated by the iterative bundle adjustment, which gets slower as more
photos are added, and as the amount of coupling between cameras
increases (e.g., when many cameras observe the same set of points).

4.3 Geo-registration
The SfM procedure estimates relative camera locations. The final
step of the location estimation process is to align the model with a
geo-referenced image or map (such as a satellite image, floor plan,
or digital elevation map) to enable the determination of absolute
geocentric coordinates of each camera. This step is unnecessary for
many features of our explorer system to work, but is required for
others (such as displaying an overhead map).

The estimated camera locations are, in theory, related to the ab-
solute locations by a similarity transform (global translation, rota-
tion, and uniform scale). To determine the correct transformation



Figure 4: Example registration of cameras to an overhead map.
Here, the cameras and recovered line segments from the Prague
data set are shown superimposed on an aerial image. (Aerial image
shown here and in Figure 5 courtesy of Gefos, a.s. (www.gefos.cz)
and Atlas.cz.)

the user interactively rotates, translates, and scales the model un-
til it is in agreement with a provided image or map. To assist the
user, we estimate the “up” or gravity vector using the method of
Szeliski [2005]. The 3D points, lines, and camera locations are
then rendered superimposed on the alignment image, using an or-
thographic projection with the camera positioned above the scene,
pointed downward. If the up vector was estimated correctly, the
user needs only to rotate the model in 2D, rather than 3D. Our expe-
rience is that it is fairly easy, especially in urban scenes, to perform
this alignment by matching the recovered points to features, such as
building façades, visible in the image. Figure 4 shows a screenshot
of such an alignment.

In some cases the recovered scene cannot be aligned to a geo-
referenced coordinate system using a similarity transform. This
can happen if the SfM procedure fails to obtain a fully metric re-
construction of the scene, or because of low-frequency drift in the
recovered point and camera locations. These sources of error do not
have a significant effect on many of the navigation controls used in
our explorer interface, as the error is not usually locally noticeable,
but are problematic when an accurate model is desired.

One way to “straighten out” the recovered scene is to pin down
a sparse set of ground control points or cameras to known 3D lo-
cations (acquired, for instance, from GPS tags attached to a few
images) by adding constraints to the SfM optimization. Alterna-
tively, a user can manually specify correspondences between points
or cameras and locations in an image or map, as in the work of
Robertson and Cipolla [2002].

4.3.1 Aligning to Digital Elevation Maps

For landscapes and other very large scale scenes, we can take ad-
vantage of Digital Elevation Maps (DEMs), used for example in
Google Earth (earth.google.com) and with coverage of most of
the United States available through the U.S. Geological Survey
(www.usgs.com). To align point cloud reconstructions to DEMs,
we manually specify a few correspondences between the point
cloud and the DEM, and estimate a 3D similarity transform to de-
termine an initial alignment. We then re-run the SfM optimization
with an additional objective term to fit the specified DEM points. In
the future, as more geo-referenced ground-based imagery becomes
available (e.g., through systems like WWMX), this manual step will

no longer be necessary.

4.4 Scene representation
The representation of the reconstructed scene model that we use for
our photo exploration tool is as follows:

• A set of points P = {p1, p2, . . . , pn}. Each point consists
of a 3D location and a color obtained from one of the image
locations where that point is observed.

• A set of cameras, C = {C1, C2, . . . , Ck}. Each camera Cj

consists of an image Ij , a rotation matrix Rj , a translation tj ,
and a focal length fj .

• A mapping, Points, between cameras and the points they ob-
serve. That is, Points(C) is the subset of P containing the
points observed by camera c.

• A set of 3D line segments L = {l1, l2, . . . , lm} and a map-
ping, Lines, between cameras and the set of lines they ob-
serve.

5 Photo explorer rendering
Once a set of photographs of a scene has been registered, the user
can browse the photographs with our photo explorer interface. Two
important aspects of this interface are how we render the explorer
display, described in this section, and the navigation controls, de-
scribed in Section 6.

5.1 User interface layout
Figure 5 shows a screen shot from the main window of our photo
exploration interface. The components of this window are the main
view, which fills the window, and three overlay panes: an informa-
tion and search pane on the left, a thumbnail pane along the bottom,
and a map pane in the upper-right corner.

The main view shows the world as seen from a virtual camera
controlled by the user. This view is not meant to show a photo-
realistic view of the scene, but rather to display photographs in spa-
tial context and give a sense of the geometry of the true scene.

The information pane appears when the user visits a photo-
graph. This pane displays information about that photo, including
its name, the name of the photographer, and the date and time when
it was taken. In addition, this pane contains controls for searching
for other photographs with certain geometric relations to the current
photo, as described in Section 6.2.

The thumbnail pane shows the results of search operations as a
filmstrip of thumbnails. When the user visits a camera Ccurr and
mouses over a thumbnail, the corresponding image Ij is projected
onto a plane in the main view to show the content of that image
and how it is situated in space (we precompute projection planes,
CommonPlane(Cj , Ck), for each pair Cj , Ck of cameras, by ro-
bustly fitting a plane to Points(Cj)∪Points(Ck)). The thumbnail
panel also has controls for sorting the current thumbnails by date
and time and viewing them as a slideshow.

Finally, the map pane displays an overhead view of scene that
tracks the user’s position and heading.

5.2 Rendering the scene
The main view displays a rendering of the scene from the current
viewpoint. The cameras are rendered as frusta. If the user is visiting
a camera, the back face of that camera frustum is texture-mapped
with an opaque, full-resolution version of the photograph, so that



Figure 5: Screenshots from the explorer interface. Left: a view looking down on the Prague dataset, rendered in a non-photorealistic style.
Right: when the user visits a photo, that photo appears at full-resolution, and information about it appears in a pane on the left.

the user can see it in detail. The back faces of the other cam-
eras frusta are either texture-mapped with a low-resolution, semi-
transparent thumbnail of the photo (if the frustum is near the user’s
current position), or rendered with a translucent white color.

The recovered points and line segments are used to depict the
scene itself. The points are drawn with their acquired color and the
lines are drawn in black . The user can control whether or not the
points and lines are drawn, the point size, and the line thickness.

We also provide a non-photorealistic rendering mode that pro-
vides more attractive visualizations. This mode uses a washed-out
coloring to give an impression of scene appearance and geometry,
but is abstract enough to be forgiving of the lack of detailed geome-
try. For each camera Cj , we first robustly fit a plane to Points(Cj)
using RANSAC. If the number of inliers to the recovered plane is
at least 20% of the size of Points(Cj), we then fit a robust bound-
ing box, Rectangle(Cj), to the inliers in the plane. To render the
scene, we project a blurred, semi-transparent version of each im-
age Ij onto Rectangle(Cj) and use alpha blending to combine the
results. In parts of the scene represented with a sparse number of
points, our system falls back to the point and line rendering. An
example rendering using projected images overlaid with line seg-
ments is shown in Figure 5.

5.3 Transitions between photographs
An important element of our user interface is the method used to
generate transitions when the user moves between photos in the ex-
plorer. Most existing photo browsing tools cut from one photograph
to the next, sometimes smoothing the transition by cross-fading. In
our case, the geometric information we infer about the photographs
allows us to use camera motion and view interpolation to make
transitions more visually compelling and to emphasize the spatial
relationships between the photographs.

5.3.1 Camera motion

When the virtual camera moves from one photograph to another,
the system linearly interpolates the camera position between the ini-
tial and final camera locations, and the camera orientation between
unit quaternions representing the initial and final orientations. The
field of view of the virtual camera is also interpolated so that when
the camera reaches its destination, the destination image will fill as
much of the screen as possible. The camera path timing is non-
uniform, easing in and out of the transition. We fade out all other
camera frusta before starting the motion, to avoid flickering caused
by many frusta rapidly moving through the view.

If the camera moves as the result of an object selection, the tran-
sition is slightly different. Before the camera starts moving, it ori-
ents itself to point at the mean of the selected points. The camera
remains pointed at the mean as it moves, so that the selected object
stays fixed in the view. This helps keep the object from undergoing
large, distracting motions during the transition. The final orienta-
tion and focal length are computed so that the selected object is
centered and fills the screen.

5.3.2 View interpolation

During camera transitions we also display in-between images. We
have experimented with two simple techniques for morphing be-
tween the start and destination photographs: triangulating the point
cloud and using planar impostors.

Triangulated morphs To create a triangulated morph between
two cameras Cj and Ck, we first compute a 2D Delaunay triangula-
tion for image Ij using the projections of Points(Cj) into Ij . The
projections of Lines(Cj) into Ij are imposed as edge constraints
on the triangulation [Chew 1987]. The resulting Delaunay triangu-
lation may not cover the entire image, so we overlay a grid onto the
image and add each grid point not contained in the original trian-
gulation. Each added grid point is associated with a 3D point on
a plane approximating the geometry of the points seen by both Cj

and Ck. The connectivity of the triangulation is then used to cre-
ate a 3D mesh from Points(Cj) and the endpoints of Lines(Cj).
We texture map the mesh by projecting Ij onto each triangle. We
compute a mesh for Ck and texture map it in the same way.

To render an in-between view, we render each mesh from the
new viewpoint and blend the two rendered images in proportion
to the distance from the in-between camera to the two endpoints.
While this technique does not use completely accurate geometry,
the meshes are often sufficient to give a sense of the 3D geome-
try of the scene. However, missing geometry and outlying points
can sometimes cause distracting artifacts, as demonstrated in the
accompanying video.

Planar morphs To create a morph between cameras Cj and Ck

using a planar impostor, we simply project the two images Ij and
Ik onto CommonPlane(Cj , Ck) and cross-fade between the pro-
jected images as the camera moves from Cj to Ck. The resulting
in-betweens are not as faithful to the underlying geometry as the
triangulated morphs, tending to stabilize only a dominant plane in
the scene, but the resulting artifacts are usually less objectionable,



perhaps because we are used to seeing distortions caused by view-
ing planes from different angles. Because of the robustness of this
method, we prefer to use it rather than triangulation as the default
for transitions. Example morphs using both techniques are shown
in the accompanying video.

There are a few special cases when view interpolation is not
used during a transition from image Cj to Ck. First, if the cam-
eras observe no common points, our system currently has no basis
for interpolating the images. Instead, we fade out the start image,
move the camera to the destination as usual, then fade in the desti-
nation image. Second, if the normal to CommonPlane(Cj , Ck) is
nearly perpendicular to the average of the viewing directions of Cj

and Ck, the projected images would undergo significant distortion
during the morph. In this case, we revert to using a plane pass-
ing through the mean of the points common to both views, whose
normal is the average of the viewing directions. Finally, if the van-
ishing line of CommonPlane(Cj , Ck) is visible in images Ij or
Ik, it is impossible to project the entirety of Ij or Ik onto the plane.
In this case, we project as much as possible of Ij and Ik onto the
plane, and project the rest onto the plane at infinity.

6 Photo explorer navigation
Our image exploration tool supports several modes for navigat-
ing through the scene and finding interesting photographs. These
modes include free-flight navigation, finding related views, object-
based navigation, and viewing slideshows.

6.1 Free-flight navigation
The free-flight navigation controls include some of the standard 3D
motion controls found in many games and 3D viewers. The user can
move the virtual camera forward, back, left, right, up, and down,
and can control pan, tilt, and zoom. This allows the user to freely
move around the scene and provides a simple way to find interesting
viewpoints and to find nearby photographs.

At any time, the user can click on a frustum in the main view,
and the virtual camera will smoothly move until it is coincident
with the selected camera. The virtual camera pans and zooms so
that the selected image fills as much of the main view as possible.

6.2 Moving between related views
When visiting a photograph Ccurr, the user has a snapshot of the
world from a single point of view and an instant in time. The user
can pan and zoom to explore the photo, but might also want to see
aspects of the scene beyond those captured in a single picture; he
or she might wonder, for instance, what lies just outside the field
of view, or to the left of the objects in the photo, or what the scene
looks like at a different time of day.

To make it easier to find related views such as these, we provide
the user with a set of “geometric” browsing tools. Icons associated
with these tools appear in two rows in the information pane, which
appears when the user is visiting a photograph. These tools find
photos that depict parts of the scene with certain spatial relations to
what is currently in view. The mechanism for implementing these
search tools is to project the points observed by the current camera,
Points(Ccurr), into other photos (or vice versa), and select views
based on the projected motion of the points. For instance, to answer
the query “show me what’s to the left of this photo,” we search for
a photo in which Points(Ccurr) appear to have moved right.

For geometric searches, new images are selected from the set of
neighbors of the current camera. We define the neighbors of C to
be the set of cameras that see at least one point in Points(C), i.e.,

Neighbors(C) = {Cj |Points(Cj) ∩ Points(C) 6= ∅}

The tools in the first row find related images at different scales.
These tools select images by estimating visibility and “how large”
a set of points appears in different views. Because we do not have
complete knowledge of the geometry of the scene, to check the vis-
ibility of a point in a camera we simply check whether the point
projects inside the camera’s field of view. To estimate the apparent
size of a set of points P in an image C, we project the points of P
into C, compute the axis-aligned bounding box of the projections
that are inside the image, and calculate the ratio of the area of the
bounding box (in pixels) to the area of the image. We refer to this
quantity as Size(P, C).

There are three tools in this set: (1) find details, or higher-
resolution close-ups, of the current photo, (2) find similar photos,
and (3) find zoom-outs, or photos that show more surrounding con-
text. If the current photo is Ccurr, these tools search for appropriate
neighboring photos Cj by computing Size(Points(Cj), Ccurr) or,
conversely, Size(Points(Ccurr), Cj). We deem a photo Cj to be:

• a detail of Ccurr if Size(Points(Cj), Ccurr) < 0.75 and most
points visible in Ccurr are visible in Cj

• similar to Ccurr if

0.75 <
Size(Points(Ccurr), Cj)

Size(Points(Ccurr), Ccurr)
< 1.3

and the angle between the viewing directions of Ccurr and Cj

is less than a threshold

• a zoom-out of Ccurr if Ccurr is a detail of Cj

The results of any of these searches are displayed in the thumb-
nail pane (sorted by increasing apparent size, in the case of details
and zoom-outs). These tools are useful for viewing the scene in
more detail, comparing similar views of an object which differ in
other respects, such as time of day, season, and year, and for “taking
a step back” to see more of the scene.

The tools in the second row give the user a simple way to “step”
left or right, i.e., to see more of the scene in a particular direction.
For each camera, we precompute a “left” and “right” image, and
display them as thumbnails. To find a left and right image for cam-
era Cj , we compute the average 2D motion mjk of the projections
of Points(Cj) from image Ij to each neighboring image Ik. If the
angle between mjk and the desired direction is small (and the ap-
parent sizes of Points(Cj) in both images are similar), then Ck is
a candidate left or right image. Out of all the candidates, we select
the image Ik whose motion magnitude ||mjk|| is closest to 10% of
the width of image Ij .

Along with the left and right images, we provide a “step back”
tool, which is a shortcut to the first zoom-out chosen by the proce-
dure described above.

6.3 Object-based navigation
Another search query our system supports is “show me photos of
this object,” where the object in question can be directly selected in
a photograph or in the point cloud. This type of search, applied to
video in [Sivic and Zisserman 2003] is complementary to, and has
certain advantages over, keyword search. Being able to select an
object is especially useful when exploring a scene—when the user
comes across an interesting object, direct selection is an intuitive
way to find a better picture of that object.

In our photo exploration system, the user selects an object by
dragging a 2D box around a region of the current photo or the point
cloud. All points whose projections are inside the box are consid-
ered selected. Our system then searches for the “best” picture of the
selected points by scoring each image in the database based on how
good a representation it is of the selection. The top scoring photo is



Figure 6: Object-based browsing. The user drags a rectangle around Neptune in one photo, and the system finds a new, high-resolution
photograph.

selected as the representative view, and the virtual camera is moved
to that image. The remaining images with scores above a threshold
are displayed in the thumbnail pane, sorted by descending score.
An example interaction is shown in Figure 6.

Any function that rates the “goodness” of an image with respect
to a selection can be used as the scoring function. We choose a
function based on three criteria: 1) the selected points are visible,
2) the object is viewed from a good angle, and 3) the object appears
in sufficient detail. For each image Ij , we compute the score as a
weighted sum of three terms, Evisible, Eangle, and Edetail. Details
of the computation of these terms can be found in Appendix C.

A point selection can sometimes contain points that the user did
not intend to select. In particular, it may include occluded points
that happen to project inside the selection rectangle. Because the
complete scene geometry is unknown, it is difficult to test for visi-
bility. To avoid problems due to larger-than-intended selections, we
first prune the point set to remove likely occluded pixels. In partic-
ular, if the selection was made while visiting an image Ij (and is
contained in the image boundary), we use the points that are known
to be visible from that viewpoint (Points(Cj)) to refine the selec-
tion. We compute the 3×3 covariance matrix for the selected points
that are also in Points(Cj), and remove all selected points with a
Mahalanobis distance greater than 1.2. If the selection was made
directly on the projected point cloud (i.e., not on an image) we in-
stead compute a weighted mean and covariance matrix using the
entire set of selected points. The weight for each point is the in-
verse of the distance from the virtual camera center to the point.

6.4 Creating stabilized slideshows

Whenever the thumbnail pane contains more than one image, its
contents can be viewed as a slideshow by pressing the “play” but-
ton in the pane. By default, the virtual camera will move through
space from camera to camera, pausing at each image for a few sec-
onds before proceeding to the next. The user can also “lock” the
camera, fixing it to the its current position, orientation, and field of
view. When the images in the thumbnail pane are all taken from
approximately the same location, this mode stabilizes the images,
making it easier to compare one image to the next. This mode is
useful for studying changes in scene appearance as a function of
time of day, season, year, weather patterns, etc. An example stabi-
lized slideshow is shown in the companion video.

In addition to being able to view search results as a slideshow,
the user can load a saved image sequence. This feature can be used
to interactively view tours authored by other users.

7 Enhancing scenes
Our system allows users to add content to a scene in several ways.
First, the user can register their own photographs to the scene at
run-time, after the initial set of photos has been registered. Second,
users can annotate regions of images, and these annotations can be
propagated to other images.

7.1 Registering new photographs
New photographs can be registered on the fly, as follows. First, the
user switches to a mode where an overhead map fills the view, opens
a set of images, which are displayed in the thumbnail panel, and
drags and drops each image onto its approximate location on the
map. After each image has been dropped, the system estimates the
location, orientation, and focal length of each new photo by running
an abbreviated version of the SfM pipeline described in Section 4
at a local level. First, SIFT keypoints are extracted and matched to
the keypoints of the twenty cameras closest to the initial location;
the matches to each other camera are pruned to contain geometri-
cally consistent matches; the existing 3D points corresponding to
the matches are identified; and finally, these matches are used to
refine the pose of the new camera. After a set of photos has been
dragged onto the map, it generally takes around ten seconds to op-
timize the parameters for each new camera on our test machine, a
3.40GHz Intel Pentium 4.

7.2 Annotating objects
Annotations are supported in other photo organizing tools, but a
unique feature of our system is that annotations can be automati-
cally transferred from one image to all other images that contain
the same scene region(s).

The user can select a region of an image and enter a text annota-
tion. The annotation is then stored, along with the selected points,
and appears as a semi-transparent box around the selected points.
Once annotated, an object can be linked to other sources of infor-
mation, such as web sites, guidebooks, and video and audio clips.

When an annotation is created, it is automatically transferred
to all other relevant photographs. To determine if an annotation
is appropriate for a given camera Cj , we check for visibility and
scale. To determine visibility, we simply test that at least one of
the annotated points is in Points(Cj). To check that the annota-
tion is at an appropriate scale for the image, we determine the ap-
parent size, Size(Pann, Cj), of the annotation in image Ij , where
Pann is the set of annotated points. If the annotation is visible and



Figure 7: Example of annotation transfer. Three regions were annotated in the photograph on the left; the annotations were automatically
transferred to the other photographs, a few of which are shown on the right. Our system can handle partial and full occlusions.

0.05 < Size(Pann, Cj) < 0.8 (to avoid barely visible annotations
and annotations that take up the entire image), we transfer the an-
notation to Cj . When the user visits Cj , the annotation is displayed
as a box around the annotated points, as shown in Figure 7.

Besides quickly enhancing a scene with semantic information,
the ability to transfer annotations has several applications. First,
it enables a system in which a tourist can take a photo (e.g., from
a camera phone that runs our software) and instantly see informa-
tion about objects in the scene super-imposed on the image. In
combination with a head-mounted display, such a capability could
offer a highly portable, computer-vision-based augmented reality
system [Feiner et al. 1997]. Second, it makes labeling photographs
in preparation for keyword search more efficient. If an object is
annotated with a set of keywords in one photo, transferring the an-
notation to other photos enables multiple images to be added to a
keyword search database based on a single annotation.

We can also leverage the many existing images that have already
been annotated. There are several sources of existing annotations.
On Flickr, for instance, users can attach notes to rectangular re-
gions of photos. Tools such as the ESP Game [von Ahn and Dab-
bish 2004] and LabelMe [Russell et al. 2005] encourage users to
label images on the web, and have accumulated a database of an-
notations. By registering such labeled images with an existing col-
lection of photos using our system, we could transfer the existing
labels to every other relevant photo in the system. Other images
on the web are implicitly annotated: for instance, an image on a
Wikipedia page is “annotated” with the URL of that page. By reg-
istering such images, we could link other photos to the same page.

8 Results
We have evaluated our system using several data sets. The first two
sets were taken in more controlled settings (i.e., a single person with
a single camera and lens): Prague, a set of 197 photographs of the
Old Town Square in Prague, Czech Republic, taken over the course
two days, and Great Wall, a set of 120 photographs taken along the
Great Wall of China (82 of which were ultimately registered).

We have also experimented with “uncontrolled” sets consisting
of images downloaded from Flickr. In each case, our system de-
tected and matched features on the entire set of photos and automat-
ically identified and registered a subset corresponding to one con-
nected component of the scene. The four sets are as follows. Notre
Dame is a set of 597 photos of the Notre Dame Cathedral in Paris.
These photos were registered starting from 2,635 photos matching
the search term “notredame AND paris.” Yosemite is a set of 325

Figure 8: A registered historical photo. Left: Moon and Half Dome,
1960. Photograph by Ansel Adams. We registered this historical
photo to our Half Dome model. Right: rendering of DEM data for
Half Dome from where Ansel Adams was standing, as estimated
by our system. The white border was drawn manually for clarity.
(DEM and color texture courtesy of the U.S. Geological Survey.)

photos of Half Dome in Yosemite National Park, registered from
1,882 photos matching “halfdome AND yosemite.” Trevi Foun-
tain is a set of 360 photos of the Trevi Fountain in Rome, registered
from 466 photos matching “trevi AND rome.” Trafalgar Square
is a set of 278 photos from Trafalgar Square, from 1893 photos
matching “trafalgarsquare.”

The average reprojection error over each of the datasets is 1.516
pixels (the average long and short dimensions of the images we reg-
istered are 1,611 by 1,128 pixels). Visualizations of these data sets
are shown in Figures 1-8. Please see the accompanying video for
a demonstration of features of our photo explorer, including object
selection, related image selection, morphing, and annotation trans-
fer, on several data sets.

For the Half Dome data set, after initially constructing the model,
we aligned it to a digital elevation map using the approach de-
scribed in Section 4.3.1. We then registered a historical photo,
Ansel Adam’s “Moon and Half Dome,” to the data set, by drag-
ging and dropping it onto the model using the method described in
Section 7.1. Figure 8 shows a synthetic rendering of the scene from
the estimated position where Ansel Adams took the photo.

9 Discussion and future work
We have presented a novel end-to-end system for taking an un-
ordered set of photos, registering them, and presenting them to a



Figure 9: Unregistered photographs. A few representative photos from the Trevi Fountain that our system was unable to register. These
include images that are too noisy, dark, cluttered, or whose scale or viewpoint are too different from other images, to be reliably matched.

user in a novel, interactive 3D browser. We evaluated our recon-
struction algorithm and exploration interface on several large sets
of photos of popular sites gathered from the Internet and from per-
sonal photo collections.

For the data sets taken from the Internet, our reconstruction al-
gorithm successfully registered a significant subset of the photos.
Most of the photos that were not registered belong to parts of the
scene disconnected from the reconstructed portion, but others could
not be matched due to other factors, such as excessive blur or noise,
underexposure, or too little overlap with other photos. Figure 9
shows a few representative images from the Trevi Fountain data set
that our system was unable to register.

Our reconstruction algorithm has several limitations that we
would like to address in the future. Our current SfM implementa-
tion becomes slow as the number of registered cameras grows. We
would like to speed up the process, for instance, by choosing a bet-
ter order in which to register the photographs. A more efficient or-
dering might reconstruct the large-scale scene structure with a small
number of views, then register the remaining views using local op-
timization. Additionally, we can improve efficiency using partition-
ing methods [Steedly et al. 2003]. Our SfM procedure is also not
guaranteed to produce a metric scene reconstruction without ground
control points, which makes obtaining very accurate models more
difficult. This problem will be alleviated as more georeferenced
data becomes available. Our camera model does not handle lens
distortion, resulting in greater reconstruction error; we plan to use a
more sophisticated model in the future. Some scenes are challeng-
ing to reconstruct automatically, particularly those with repeating
structures or without strong features. Finally, our algorithm only
reconstructs one connected component of the input images. We
plan to extend it to reconstruct all structures present in the input.

Our explorer interface can also be improved in several ways.
For large numbers of photos, the scene can become cluttered with
frusta. To alleviate such problems, we wish to explore clustering
the photos and allowing the user to display only photos with cer-
tain attributes. Better morphing and view interpolation techniques
would provide an even more compelling sense of presence.

Ultimately, we wish to scale up our reconstruction algorithm to
handle millions of photographs and maintain a database cataloging
different scenes and annotations. We envision a system that au-
tomatically scours the web for photographs and determines if and
how new photos fit into the database. Such a system would also
geo-register photographs leveraging existing geo-referenced data.
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A Structure from motion optimization
A perspective camera can be parameterized by an eleven-parameter
projection matrix. Making the common additional assumptions that
the pixels are square and that the center of projection is coinci-
dent with the image center, the number of parameters is reduced
to seven: the 3D orientation (three parameters), the camera center c
(three parameters), and the focal length f (one parameter). We use
an incremental rotation, ω to parameterize the 3D rotation, where

R(θ, n̂) = I + sin θ [n̂]× + (1 − cos θ) [n̂]2× , ω = θn̂

is the incremental rotation matrix applied to an initial rotation, and

[n̂]× =

[

0 −n̂z n̂y

n̂z 0 −n̂x

−n̂y n̂x 0

]

We group the seven parameters into a vector, Θ = [ω, c, f ]. Each
point is parameterized by a 3D position, p.



Recovering the parameters can be formulated as an optimization
problem. In particular, we have a set of n cameras, parameterized
by Θi. We also have a set of m tracks, parameterized by pj , and
a set of 2D projections, qij , where qij is the observed projection of
the j-th track in the i-th camera.

Let P(Θ, p) be the equation mapping a 3D point p to its 2D pro-
jection in a camera with parameters Θ. P transforms p to homoge-
neous image coordinates and performs the perspective division:

p′(Θ, p) = KR(p − c)

P(Θ, p) =
[

−p′
x/p′

z −p′
y/p′

z

]T

where K = diag(f, f, 1).
We wish to minimize the sum of the reprojection errors:

n
∑

i=1

m
∑

j=1

wij ||qij − P(Θi, pj)||

(wij is used as an indicator variable where wij = 1 if camera i
observes point j, and wij = 0 otherwise).

When initializing a new camera, we have one or two independent
estimates of the focal length. One estimate, f1, is 1

2
(K11 + K22),

where K is the intrinsic matrix estimated using DLT. The other, f2,
is calculated from the EXIF tags of an image, and is undefined if
the necessary EXIF tags are absent. This estimate is usually good,
but can occasionally be off by more than a factor of two. We prefer
to use f2 as initialization when it exists, but first we check that
0.7f1 < f2 < 1.4f1 to make sure f2 is a reasonable estimate. If
this test fails, we use f1.

B Image selection criteria
When determining how well an image represents a point set, the
score for each image Ij is a weighted sum of three terms, Evisible+
αEangle + βEdetail (we use α = 1

3
and β = 2

3
).

To compute Evisible, we first check whether Pinliers ∩
Points(Cj) is empty. If so, the object is deemed not to be visible
to Cj at all, and Evisible = −∞. Otherwise, Evisible = ninside

|Pinliers|
,

where ninside denotes the number of points in Pinliers that project
inside the boundary of image Ij .

Next, to compute Eangle, we first attempt to find a dominant
plane in Pinliers by fitting a plane to the points using orthogonal re-
gression inside a RANSAC loop. If the plane fits most of the points
fairly tightly, i.e., if the percentage of points in Pinliers is above
a threshold of 30%, we favor cameras that view the object head-
on (i.e., with the camera pointing parallel to the normal, n̂, to the
plane), by setting Eangle = V (Cj) · n̂, where V indicates viewing
direction. If enough points do not fit a plane, we set Eangle = 0.

Finally, we compute Edetail to be the area, in pixels, of the
bounding box of the projections of Pinliers into image Ij (consid-
ering only points that project inside the boundary of Ij). Edetail is
normalized by the area of the largest such bounding box.
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